期刊文献+

基于声谱图纹理特征的蛋鸡发声分类识别 被引量:10

Classification and Recognition of Laying Hens’ Vocalization Based on Texture Features of Spectrogram
下载PDF
导出
摘要 为有效地辨别蛋鸡不同类型声音,了解蛋鸡的健康状况以及个体需求,提高生产效率的同时改善蛋鸡福利化养殖,提出一种基于声谱图纹理特征的蛋鸡发声分类识别方法。以海兰褐蛋鸡的声音为研究对象,将图像处理和声音处理技术相结合,由一维声音信号转换为二维图像信号,二维声谱图中的纹理特征呈现了蛋鸡声音的更多细节信息。最后,利用2DGabor滤波器提取蛋鸡发声声谱图中的声纹信息,并采用人工神经网络模型进行训练和分类识别。试验结果表明,本文方法平均灵敏度和平均精确度不低于92.0%,风机噪声识别灵敏度达99.3%,鸣叫声识别灵敏度最低,为76.0%。 Sound technology is an effective method to monitor animal behavior. Animal vocalization can reflect their individual health status and individual needs, and can be used as an assisted indicator for evaluating animal welfare and animal comfort level. In the process of laying hens’ breeding, it is helpful for farmers to understand their animals by effectively identifying different types of laying hens’ vocalization, so as to improve the production efficiency as well as animal welfare. A method of classification and recognition of Hy-Line Brown laying hens’ vocalization was introduced based on texture features of spectrogram. The method combined image processing with sound processing technology to analyze voiceprint information hiding in the two-dimensional spectrum of spectrograms from laying hens’ vocalization, and then the texture features were extracted from spectrogram by using2D Gabor filter. Subsequently, machine learning algorithm like backpropagation neural network was used for sound classification and recognition. Kinect for Windows V1 was selected as sound input device, and LabVIEW and Matlab software were used for developing the algorithm of sound data acquisition and sound analysis, respectively. The experimental results showed that the average precision rate and sensitivity rate were no less than 92.0%, and the sensitivity rate of fan noise was the highest one, which was 99.3%, and the sensitivity rate of normal calls was the lowest one, which was 76.0%. The research result can provide a visual and non-invasive method for farmers to identify the specific vocal behavior of laying hens, and also provide a feasible reference means for in-depth study of animal behavior and welfare.
作者 杜晓冬 滕光辉 TOMAS Norton 王朝元 刘慕霖 DU Xiaodong;TENG Guanghui;TOMAS Norton;WANG Chaoyuan;LIU Mulin(College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China;Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven 3001, Belgium)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2019年第9期215-220,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家重点研发计划项目(2016YFD0700204、2017YFD0701602) 国家建设高水平大学公派研究生项目(201806350182)
关键词 蛋鸡 声音识别 声谱图 GABOR滤波器 laying hens sound recognition spectrogram Gabor filter
  • 相关文献

参考文献6

二级参考文献78

  • 1方峻,徐诚.决策树学习方法在参数设计中的应用[J].农业机械学报,2006,37(2):127-131. 被引量:1
  • 2姜仕仁,丁平,李建华,诸葛阳.红腹锦鸡鸣声声谱分析[J].Zoological Research,1996,17(4):403-409. 被引量:8
  • 3林琴,张道信,吴小培.一种基于改进谱减法的语音去噪新方法[J].计算机技术与发展,2007,17(7):63-66. 被引量:17
  • 4R Chellappa,C L Wilson,S Sirohey. Human and Machine Recognition of faces: A survey[J].Proceedings of the IEEE, 1995; 83 (5).
  • 5P N Belhumeur,J P Hespanha et al. Eigenfaces vs Fisherfaces:recognition using class specific linear projection[J].TPAMI, 1997 ;20(7):711~720.
  • 6S Shan,Y Chang,W Gao. Curse of Mis-alignment in Face Recognition:Problem and a Novel Mis-alignment Learning Solution[C].In:Proceeding of FG04,Seoul,Korea,2004.
  • 7M Lades,J C Vorbruggen et al.Distortion Invariant Object Recognition in the Dynamic Link Architecture[J].IEEE Trans On Computers, 1993;42(3) :300~311.
  • 8Laurenz Wiskott,Jean Marc Fellous,Norbert Kruger et al. Face Recogniton by Elastic Bunch Graph Matching[J].IEEE Trans On PAMI,1997; 19 ( 7 ): 775~779.
  • 9C Liu,H Wechsler. Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition[J].IEEE Trans Image Processing, 2002; 11 (4): 467~476.
  • 10V Krueger,G Sommer. Gabor Wavelet Networks for Object Representation[J].Journal of the Optical Society of America(JOSA),2002.

共引文献79

同被引文献106

引证文献10

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部