期刊文献+

基于IFCM加权的SVDD硬件木马检测方法

Hardware Trojan detection method based on IFCM weighted SVDD
下载PDF
导出
摘要 针对硬件木马(HT)种类繁多难以获取未知木马特征及采集的旁路信号含噪声问题,提出了一种基于IFCM加权的SVDD(IFCMW-SVDD)硬件木马检测方法。传统支持向量数据描述(SVDD)在解决单分类问题时存在相同条件下训练全部样本的不足,需要根据相应问题对样本有主次之分进行训练。通过一种改进的模糊C均值方法(IFCM)计算金片旁路信号的隶属度,将其作为样本特征的权重(W)系数,使得针对硬件木马检测问题构建SVDD模型的支持向量能够描述金片信号的同时尽可能减小描述范围。实验表明,所提方法实现单分类硬件木马检测的同时较传统SVDD算法在检测精度和稳定性上都有所提高。 Aiming at the problems that a great variety of hardware Trojans,it is difficult to obtain unknown Trojan features,and the collected side-channel signals contain noise,this paper proposed a hardware Trojan(HT)detection method based on IFCM weighted SVDD(IFCMW-SVDD).The traditional SVDD has the defective of training all the samples under the same conditions when solving the single classification problem,samples need to be trained in order of priority according to the corresponding problems.But this algorithm calculated the membership degree of the golden chip bypass signal by IFCM,and used it as the weight(W)coefficient of the sample feature,the support vectors of constructed SVDD model for the hardware Trojan detection problem could describe the golden chip signals while minimizing the description range.Experiments show that the proposed method achieves the detection of single-class hardware Trojans and has higher detection accuracy and stability than the traditional SVDD algorithm.
作者 魏延海 李雄伟 张阳 胡晓阳 张坤鹏 Wei Yanhai;Li Xiongwei;Zhang Yang;Hu Xiaoyang;Zhang Kunpeng(Equipment Simulation Training Center,Army Engineering University of PLA (Shijiazhuang Campus),Shijiazhuang 050003,China;Unit 66407 of PLA,Beijing 100093,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第10期3054-3057,共4页 Application Research of Computers
基金 国家自然科学基金资助项目 国家青年科学基金资助项目 河北省自然科学基金资助项目
关键词 硬件木马 旁路信号 改进模糊C-均值算法 支持向量数据描述 隶属度 hardware Trojan side-channel signals improved fuzzy C-means method(IFCM) support vector data description(SVDD) membership degree
  • 相关文献

参考文献3

二级参考文献26

  • 1杨辉华,王行愚,王勇,何倩.基于KPLS的网络入侵特征抽取及检测方法[J].控制与决策,2005,20(3):251-256. 被引量:14
  • 2张蕾,吴文玲.SMS4密码算法的差分故障攻击[J].计算机学报,2006,29(9):1596-1602. 被引量:67
  • 3蒋卫华,种亮,杜君.入侵检测中的审计追踪技术[J].计算机工程,2006,32(18):169-171. 被引量:7
  • 4姚羽,高福祥,邓庆绪,于戈,张守智.混合前馈型神经网络在入侵检测中的应用研究[J].控制与决策,2007,22(4):432-435. 被引量:1
  • 5Botha Martin, Von Solms Rossouw. Utilizing fuzzy logic and trend analysis for effective intrusion detection [J]. Computers and Security, 2003,22(5); 423-434.
  • 6Wang Y, Yang H H, Wang X Y, et al. Distrbuted intrusion detection system based on data fusion method [C]. The 5th World Congress on Intelligent Control and Automation. New Jersey: IEEE Press, 2004: 4331- 4334.
  • 7Dasgupta D, Gonzalez F. An immunity-based technique to characterize intrusoions in computer networks [J]. IEEE Trans on Evolutionary Computation, 2002, 6(3) : 281-291.
  • 8Tax D M J, Duin R P W. Data domain description using support vectors[C]. Proc of the European Symposium on Artificial Neural Networks. Brussels: Verleysen, 1999: 251-256.
  • 9Tax D M J, Duin R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999,20 (11-13) : 1191-1199.
  • 10Vapnik V. The nature of statistical learning theory [M]. 2nd ed. New York: Springer-Verlag, 2000.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部