期刊文献+

一种基于元信息的Android恶意软件检测方法 被引量:5

Android malware detection method based on meta-information
下载PDF
导出
摘要 Android应用普遍具有比所属类型更多的功能,需要获取更多的权限,过多的权限可能带来一定的安全隐患。针对这类问题,提出一种基于元信息的Android恶意软件检测方法。首先,通过对Android应用程序描述进行LDA主题提取,实现数据降维,使用K-means聚类算法按照功能类型对应用程序分组;然后,对属于同一功能类型的所有应用程序提取其权限信息,以权限特征为研究对象,使用KNN算法进行Android恶意软件的分类检测。实验结果获得94.81%的平均准确率,证明了方法的有效性和高准确率。 Many Android applications have more functions than their types,and they need to acquire more permissions.Excessive permissions may bring some security risks.To address these issues,this paper proposed an Android malware detection method based on meta information.First,it extracted the LDA theme through the description of Android application,implemented the data dimensionality reduction,and grouped applications by the functional type used the K-means clustering algorithm.Then,for all applications belonging to the same functional type,it extracted their permission information,and took the permission features as the research object,used KNN algorithm to classify and detect the malicious software of Android.The experimental results obtain the average accuracy of 94.81%and prove the validity and high accuracy of the method.
作者 李江华 邱晨 Li Jianghua;Qiu Chen(School of Information Engineering,Jiangxi University of Science & Technology,Ganzhou Jiangxi 341000,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第10期3058-3062,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61463021,61762046) 江西省教育厅科技项目(GJJ160599,GJJ170516)
关键词 Android恶意软件检测 元信息 应用程序描述 权限特征 Android malware detection meta information application description permission features
  • 相关文献

参考文献8

二级参考文献81

  • 1Mariantonietta La Polla, Febio Martinelli, Daniele Sgandurra. A survey on security for mobile devices [J]. IEEE Communications Surveys & Tutorials, 2013, 15 (1): 446-471.
  • 2Thomas Blosing, Leonid Batyuk, Aubrey Derrick Schmidt, et al. An Android application sandbox system for suspicious soft- ware detection [C]//Proceedings of the 5th International Conference on Malicious and Unwanted Software. USA: IEEE Computer Society Press, 2010: 55-62.
  • 3Asaf Shabtai, Robert Moskovitch, Yuval Elovici, et al. Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey [J]. Information Security TechnicalReport, 2009, 14 (1): 16-29.
  • 4Asaf Shabtai, Yuval Fledeh Uri Kanonov, et al. Google Android: A comprehensive security assessment [J]. IEEE Security and Privacy, 2010, 8 (2): 35-44.
  • 5Adrienne Porter Felt, Matthew Finifter, Erika Chin, et al. A survey of mobile malware in the wild [C]//Proceedings of the 1 st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices. New York: ACM Press, 2011: 3-14.
  • 6Zheng Min, Patti& P C Lee, John C S Lui. ADAM: An automarie and extensible platform to stress test android anti-virus systems [C] //Proceefflngs of the 9th International Conference on Detection of Imrusions and Malware and Vulnerability Assessment. Berlin Heidelberg.. Springer-Verlag, 2012: 82-101.
  • 7Zhou Yajin, Jiang Xuxian. Dissecting Android malware: Chara-cterization and evolution [C] //Proceedings of the IEEE Symposium on Security and Privacy. USA: IEEE Computer Society Press, 2012: 95-109.
  • 8Zhou Wu, Zhou Yajin, Jiang Xuxian, et al. Detecting repae- kaged srnartphone applications in third-party Android market- places [C] //Proceedings of the Second ACM Conference on Data and Application Security and Privacy. New York: ACM Press, 2012: 317-326.
  • 9Mutz D, Valeur F, Vigna G. Anomalous system call detection [J]. ACM Transactions on Information and System Security, 2006, 9 (1): 61-93.
  • 10Google Android [EB/OL]. [2013-03-25]. http: //www. an-droid. com.

共引文献111

同被引文献40

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部