期刊文献+

一种基于IBPSO的SDN控制器放置优化方案 被引量:2

Optimization scheme for SDN controllers’ placement based on IBPSO
下载PDF
导出
摘要 提出了改进离散粒子群优化(improved binary particle swarm optimization,IBPSO)算法用来解决控制器放置问题。该算法基于粒子群的全局最优和单个粒子的个体最优来决定粒子当前取值概率,消除粒子当前值对下一步迭代的影响,从而加快收敛速度,找到更优的最终结果。仿真结果表明,与离散粒子群优化(binary particle swarm optimization,BPSO)算法相比,由该算法得出的控制器放置方案在实现控制器负载均衡的同时,还可以显著降低控制器的数量。 This paper proposed an improved binary particle swarm optimization(IBPSO)algorithm to solve the controllers’placement problem.IBPSO algorithm determined the current value of particles based on both the global optimal and the individual optimal,thus weakened the influence of particle current value on the next iteration,and accelerated the convergence,which leaded to a better final result.The simulation results show that compared with the BPSO algorithm,the controllers’placement scheme obtained by this algorithm can significantly reduce the number of controllers while realizing the load balancing of the controller.
作者 王潇 杨金民 Wang Xiao;Yang Jinmin(College of Computer Science & Electronic Engineering,Hunan University,Changsha 410082,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第10期3069-3071,3075,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61272401) 湖南省科技计划重点项目(2013GK2003)
关键词 软件定义网络 控制器放置 负载均衡 粒子群算法 software defined network controllers’placement load balancing particle swarm algorithm
  • 相关文献

参考文献2

二级参考文献28

  • 1高海兵,周驰,高亮.广义粒子群优化模型[J].计算机学报,2005,28(12):1980-1987. 被引量:102
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the 6^th International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995,39-43.
  • 3Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks. Piscataway, New Jersy: IEEE Service Center, 1995, 1942-1948.
  • 4Shi Y, Eberhart R. A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation. New Jersy: IEEE Press, 1998, 69-73.
  • 5Aler B, Vincent J, Anyakoha C. A review of particle swarm optimization. Natural Computing, 2008, 7(3):109-124.
  • 6LiuJ H, FanXP, QuZH. An improvedparticle swarm optimization with mutation based on similarity. The 3^rd International Conference on Natural Computation. Haikou, China, 2007,9 : 824-828.
  • 7Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm. Proceeding of the World Multieonference on Systemics, Cybernetics and Informaties. New Jersy: Piseataway, 1997, 4104-4109.
  • 8Salman A, Ahmad I, Al- madani S. Particle swarm optimization for task assignment problem. Microprocessors and Microsystems, 2002, 26(8) :363-371.
  • 9Lian Z, Gu X, Jiao B. A novel particle swarm optimization algorithm for permutation flowshop scheduling to minimize makespan. Chaos Solitons and Fractals, 2008, 35(5): 851-861.
  • 10Liao C J, Tseng C T, Luarn P. A discrete version of particle swarm optimization for flowshop scheduling problem. Computers and Operations Research, 2007, 34(10): 3099--3111.

共引文献77

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部