期刊文献+

基于DRN和Faster R-CNN融合模型的行为识别算法 被引量:3

Behavior recognition algorithm based on DRN and Faster R-CNN fusion model
下载PDF
导出
摘要 针对传统单人行为识别算法易受行人形态多样性、背景和光照等影响的问题进行研究。基于扩张残差网络(DRN)的精准分类效果及目标检测网络Faster R-CNN在目标追踪方面的准确性,提出了一种DRN和Faster R-CNN的融合网络模型。该模型在Faster R-CNN中融入DRN的扩张卷积残差块代替原来的一般卷积层,并对融合模型进行了两方面的改进:在每一层前面添加一个batch normalization层;用三层扩张卷积残差块代替部分两层残差块。实验结果表明三种融合网络识别算法在Olympic sports dataset上较其他行为识别算法取得了更高的mAP。其中,包含三层扩张卷积残差块的融合模型识别性能最好,mAP达到78.9%。 Due to the traditional single person behavior recognition algorithm is easily affected by the diversity,background and illumination of pedestrians based on the accuracy of DRN in classification and detection network Faster R-CNN in target tracking,this paper proposed a fusion network model composed of DRN and Faster R-CNN.The model integrated with dilated convolution residual in Faster R-CNN to replace the original convolution layer.It also made two improvements to the fusion model.It added a batch normalization layer in front of each layer and used three levels of dilated convolution residual blocks to instead of partial two levels of residual blocks.The experimental results show that the three fusion network recognition algorithms proposed in this paper have achieved a higher mAP than other behavior recognition algorithms on the Olympic sports dataset.Among them,the fusion model with three layers of convolution residual blocks has the best recognition performance,and mAP achieves 78.9%.
作者 杨楠 杨莘 杜能 Yang Nan;Yang Shen;Du Neng(School of Information Science & Engineering,Wuhan University of Science & Technology,Wuhan 430081,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第10期3192-3195,3200,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61502358)
关键词 行为识别 扩张残差网络 FasterR-CNN behavior recognition DRN(dilated residual networks) Faster R-CNN
  • 相关文献

参考文献4

二级参考文献31

  • 1印勇,蒋海娜.优化初始聚类中心的关键帧提取[J].计算机工程与应用,2007,43(21):165-167. 被引量:6
  • 2Dollar P, Wojek C, Schiele B, et al. Pedestrian detection: An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 34(4) : 743-761.
  • 3Benenson R, Omran M, Hosang J, et al, Ten years of pe- destrian detection, what have we learned?. [C]// European Conference on Computer Vision (ECCV) . Zurich, Switzer- land: CVRSUAD workshop, 2014:613-627.
  • 4Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( CVPR ). USA: IEEE, 2005; 886-893.
  • 5Lira J J, Zitnick C L, Dolldr P. Sketch tokens, A learned mid level representation for contour and object detection[C]// IEEE Conference on Computer Vision and Pattern Recogni- tion (CVPR). USA: IEEE, 2013: 3158-3165.
  • 6Dolldr P, Appel R, Belongie S, et al. Fast feature pyramids for obieet detection[J]. IEEE Transactions on Pattern Analy sis and Machine Intelligence, 2014,36(8) :1532-1545.
  • 7Wang Xiaoyu, Tony X, Yan Shuicheng. An HOG-LBP human detector with partial occlusion handling[C]// i2th International Conference on Computer Vision (ICCV). Kyoto, Japan: IEEE, 2009: 32-39.
  • 8Dollar P,Tu Zhuowen, Perona P, etal. Integral channel fea- tures[C]// British Machine Vision Conference ( BMVC ). London: DBLP, 2009:1-11.
  • 9Friedman J, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting[J]. The Annals of Statistics, 2000, 28(2): 337-407.
  • 10Marin J,Vdzquez D, Lfpez A M, et al. Random forests of local experts for pedestrian detection[C]//IEEE Internation al Conference on Computer Vision (ICCV). USA: IEEE, 2013 : 2592-2599.

共引文献51

同被引文献34

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部