期刊文献+

任意色散周期结构的时域有限差分方法分析

Study of arbitrary dispersion periodic structure using FDTD method
下载PDF
导出
摘要 利用辅助微分时域有限差分法求解了任意色散周期模型的电磁波传播问题。利用共轭复数对形式对任意色散媒质进行参数拟合,并将任意色散媒质的介电常数表示成公式形式,在FDTD迭代式中引入辅助微分方程,推导出了适用于多层任意色散模型的通用递推公式,分别求解了Debye、Drude与太阳能电池周期结构模型的电磁特性仿真问题。仿真结果表明:数值计算结果与CST商业软件仿真结果基本吻合,证明了所构建方法的有效性与普适性。 The electromagnetic wave propagation problem of multilayer arbitrary dispersion periodic model was solved by using auxiliary differential equation-finite-difference time-domain(ADE-FDTD)method.The complex-conjugate pole-residue pairs were utilized to fit the parameters of any dispersive medium,and the model’s dielectric constant was expressed as a formula.Furthermore,the ADE was introduced into the FDTD iteration to deduce a general formula applied on the muti-layer arbitrary dispersion model.In addition,the electromagnetic characteristic simulation of Debye,Drude and solar cell structure were respectively solved.Simulation results show that the numerical calculation results are basically consistent with the CST commercial software simulation results,which proves the validity and universality of our method.
作者 马立宪 李燕茹 陈帅 樊振宏 MA Lixian;LI Yanru;CHEN Shuai;FAN Zhenhong(Department of Electronic Engineering,Huainan Normal University,Huainan 232038,China;Key Laboratory of Ministry of Industry and Information Technology on Magnetic Simulation and Radio Frequency Sensing,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《应用光学》 CAS CSCD 北大核心 2019年第5期774-778,共5页 Journal of Applied Optics
基金 安徽省高校省级自然科学研究重点项目(KJ2014A239) 安徽省级项目(201710381087) 省级创客实验室建设项目(2016ckjh187)
关键词 共轭复数对 FDTD 任意色散 太阳能电池 complex-conjugate pole-residue pairs FDTD arbitrary dispersion solar cell
  • 相关文献

参考文献2

二级参考文献12

  • 1Farahat N, Mittra R 2002 IEEEAntennas and Propagation society International Symposium 2 568.
  • 2Joannopoulos J D, Johnson S G, Winn J N Meade R D 2008 Pho- tonic crystals: Molding the flow of light (2nd Ed.) (Princeton N J: Princeton University Press).
  • 3Penciu R S, Aydin K, Kafesaki M, Koschny T, Ozbay E, Economou E N, Soukoulis C M 2008 Opt. Express 16 18131.
  • 4Tafiove A, Hagness S C 2005 Computational Electrodynamics: The Finite-Difference lime-Domain Method (3rd Ed.) (Artech House).
  • 5Harms P, Mittra R, Ko W 1994 IEEE Trans. Antennas Propagate 42 1317.
  • 6Roden A, Gedney S D 1998 IEEE Transactions on Microwave Theory and Techniques 46 p420.
  • 7Chu Y, Schonbrun E, Yang T, Crozier K B 2008 App. Phys. Lett. 93 181108.
  • 8Malynych S, Chumanov G 2003 J. AM. Chem. Soc. 125 2896.
  • 9Sullivan D M 1992 IEEE Transactions on Antennas and Propaga- tion 40 1223.
  • 10Belkhir A, Baida F 1 2008 Phys. Rev. E 77 056701.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部