摘要
利用Mawhin重合度理论,研究了一类三阶中立型泛函微分方程同宿轨的存在性.运用一些分析技巧对先验界做出估计,对一列周期解取极限,得到了所研究的方程具有一个非平凡的同宿轨.
The existence of homoclinic orbits for a class of third-order neutral functional differential equations was studied by using Mawhin coincidence degree theory. By using some analytical techniques to estimate the priori bounds and to extract the limit of a series of periodic solutions,it was obtained that the equation studied had a nontrivial homoclinic orbit.
作者
黄曼娜
郭承军
HUANG Manna;GUO Chengjun(School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China)
出处
《仲恺农业工程学院学报》
CAS
2019年第3期62-65,共4页
Journal of Zhongkai University of Agriculture and Engineering
基金
广东省自然科学基金(2018A030313871)资助项目