期刊文献+

浅谈求解四阶抛物方程的几种方法

下载PDF
导出
摘要 高阶抛物型方程问题在工程应用和科学研究中占据着重要地位。本文主要针对四阶抛物型方程混合问题,先后给出了Crank-Nicolson隐式差分格式、Saul'yev非对称差分隐格式和一种三层显式差分格式。简要阐述了这三种方法的构造过程,并通过给出其稳定性和截断误差分析,表明这三种方法在求解四阶抛物型方程时是稳定可靠的。
出处 《科技创新导报》 2019年第17期45-46,共2页 Science and Technology Innovation Herald
  • 相关文献

参考文献1

二级参考文献12

  • 1陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,2010:82-85.
  • 2戴嘉尊,邱建贤.微分方程数值解法[M].南京:东南大学出版社,2008:47-56,79-83.
  • 3GAO Jia-quan,HE Gui-xia.An unconditionally stable parallel difference scheme for parabolic equations[J].Applied Mathematics and Computation,2003,135(2/3):391-398.
  • 4Sapagovas M.On the stability of a finite-difference scheme for nonlocal parabolic boundary-value problems[J].Lithuanian Mathematical Journal,2008,48(3):339-356.
  • 5Cash J R.Two new finite difference schemes for parabolic equations[J].SIAM Journal on Numerical Analysis,1982,21(3):433-446.
  • 6Ekolin G.Finite difference methods for a nonlocal boundary value problem for the heat equation[J].BIT Numerical Mathematics,1991,31(2):245-261.
  • 7LIU Yun-kang.Numerical solution of the heat equation with nonlocal boundary conditions[J].Journal of Computational and Applied Mathematics,1999,110(1):115-127.
  • 8Gulin A,Ionkin N,Morozova V.Stability criterion of difference schemes for the heat conduction equation with nonlocal boundary conditions[J].Computational Methods in Applied Mathematics,2006,6(1):31-55.
  • 9SUN Ping,LUO Zhen-dong,ZHOU Yan-jie.Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations[J].Applied Numerical Mathematics,2010,60(1/2):154-164.
  • 10Borovykh N.Stability in the numerical solution of the heat equation with nonlocal boundary conditions[J].Applied Numerical Mathematics,2002,42(1/3):17-27.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部