摘要
采用热重分析仪对污泥、松木屑及其混合物进行催化共热解特性分析及动力学研究。使用Coats-Redfern法对热失重曲线进行模拟并建立动力学模型,计算了污泥与松木屑催化共热解的动力学参数。结果表明:添加催化剂能够有效促进污泥与松木屑高温段有机物的降解;增加松木屑质量分数可有效减少固体残渣量,且松木屑质量分数为40%时,共热解的协同效应最佳;添加催化剂能够有效降低热解初始温度、最终温度并缩短反应时间;通过对热解特征值分析,添加CaO在城市污泥中质量分数为80%时使热解特征值D增大至10.94×10^-7;添加催化剂使城市污泥与松木屑的低温段热解活化能有所降低。
The characteristics and kinetics of catalytic co-pyrolysis of sludge,pine sawdust and their mixture were studied by thermogravimetric analyzer.The Coats-Redfern method was used to simulate the thermogravimetric curve and establish a kinetic model.The kinetic parameters of the catalytic co-pyrolysis of sludge and pine sawdust were calculated.The experiment results showed that the addition of catalyst could effectively promote organic matter degradation in the high temperature section of sludge and pine sawdust.Increasing the content of pine sawdust could effectively reduce the solid residue,and the synergetic effect of co-pyrolysis was the best when the mass fraction of pine sawdust was 40%.Adding catalyst could effectively reduce the initial temperature,final temperature and reaction time of pyrolysis.Through the analysis of pyrolysis characteristic value,when the mass fraction of CaO in municipal sludge was 80%,the pyrolysis characteristic value D increased to 10.94×10^-7.The activation energy of municipal sludge and pine sawdust at low temperature could be reduced by adding catalyst.
作者
朱广阔
朱锦娇
高英
朱跃钊
陈金铮
周心怡
ZHU Guangkuo;ZHU Jinjiao;GAO Ying;ZHU Yuezhao;CHEN Jinzheng;ZHOU Xinyi(School of Mechanical and Power Engineering,Nanjing Technical University,Nanjing 211816,China;Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology,Jiangsu Laboratory of Process Industry Energy Saving-Environmental Protection Technology and Equipment Engineering,Nanjing 211816,China;School of Energy and Science Engineering,Nanjing Technical University,Nanjing 211816,China)
出处
《印染助剂》
CAS
北大核心
2019年第8期16-21,共6页
Textile Auxiliaries
基金
江苏省环保厅课题(2013028)
江苏省高等学校自然科学研究面上项目(18KJB480005)
关键词
污泥
松木屑
催化共热解
动力学模型
sludge
pine sawdust
catalytic co-pyrolysis
kinetic model