期刊文献+

基于WebGIS的空间智能体仿真平台设计 被引量:2

Design of Spatial Agent Simulation Platform based on WebGIS
下载PDF
导出
摘要 国防设施体系规划,需要引入仿真评估手段。在分析系统需求的基础上,针对传统GIS无法支持时间因素分析和任务模拟的不足,将GIS的空间分析服务与基于智能体的仿真相结合,设计了仿真模型体系和任务数据管理方案,具有支持共享、空间分析资源丰富的优点,在WebGIS技术的支撑下,设计了适用于设施体系仿真分析评估的空间智能体仿真服务原型系统。以运输任务为算例,验证了仿真服务设计的可行性。 Task simulation is important in planning of national defense facility system.An architecture with a simulation model system and task data management system scheme is proposed to combine geo-processing service of traditional GIS and Agent simulation to overcome the shortness in temporal analysis and task simulation of traditional GIS.Potential benefits include: shareable simulations, rich spatial analysis resources, and high credibility.Based on that, an experimental Spatial-Agent simulation prototype is developed with WebGIS technology.Taking a transportation task as an example, the feasibility of the design is verified.
作者 郑重 常正阳 费允锋 Zheng Zhong;Chang Zhengyang;Fei Yunfeng(Engineering Design and Research Institute of Rocket Force Research Academy,Beijing 100011,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2019年第9期1842-1851,共10页 Journal of System Simulation
基金 中国博士后科学基金(2016M592974)
关键词 WEBGIS 空间智能体 仿真服务 设施体系 WebGIS spatial agent simulation service facility system
  • 相关文献

参考文献1

二级参考文献15

  • 1邹亮,任爱珠,张新.基于GIS的灾害疏散模拟及救援调度[J].自然灾害学报,2006,15(6):141-145. 被引量:36
  • 2Yoon C J, Fujii A. Network based agent simulation analysis [J]. Journal of Asian Architecture and Building Engineering, 2008, 7(2) : 301-308.
  • 3Cetin N, Burri A, Nagel K. A large-scale agent-based traffic micro simulation based on queue model [C]// Proceedings of Swiss Transport Research Conference (STRC). Monte Verita, Switzerland, 2003.
  • 4Sodea S, Yamashita T, Noda I. Network based pedestrian simulator [C]// New Technologies for Urban Safety of Mega Cities in Asia. Beijing, China, 2008:111- 116.
  • 5Yamashita T, Izumi K, Kurumatani K. Analysis of the effect of route information sharing on reduction of traffic congestion [C]// Applications of Agent Technology in Traffic and Transportation. Basel, Swiss : Birkhauser Basel, 2005 : 99 - 111.
  • 6Saadatseresht M, Mansourian A, Taleai M. Evacuation planning using multiohjective evolutionary optimization approach [J]. European Journal of Operational Research, 2009, 198(1): 305 -314.
  • 7Kitano H, Tadokoro S. RoboCup rescue: A grand challenge for multiagent and intelligent systems [J]. AI Magazine, 2001, 22(1): 39-52.
  • 8Massaguer D, Balasubramanian V, Mehrotra S, et al. Multi-agent simulation of disaster response [C]// First International Workshop on Agent Technology for Disaster Management. Future University, Hakodate, Japan, 2006: 153 - 156.
  • 9Narzisi G, Mysore V, Nelson L, et al. Complexities, catastrophes and cities: Unraveling emergency dynamics[C]// International Conference on Complex Systems. Boston, MA, USA, 2006: 25-30.
  • 10Mysore V, Narzisi G, Nelson L, ct al. Agent modeling of a Satin attack in Manhattan [C]// The First International Workshop on Agent Technology for Disaster Management. Future University, Hakodate, Japan, 2006:108 - 115.

共引文献22

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部