期刊文献+

Electrochemical corrosion behaviour of Sn-Zn-x Bi alloys used for miniature detonating cords 被引量:4

Electrochemical corrosion behaviour of Sn-Zn-x Bi alloys used for miniature detonating cords
原文传递
导出
摘要 Recently, Sn-Zn-Bi alloys have been reported to be the sheath material for miniature detonating cords,due to appropriate mechanical properties, ease of manufacturing, and low cost. Bi addition was found beneficial to the mechanical performance of Sn-Zn. However, limited information about the influence of Bi on the corrosion properties of Sn-Zn alloys has been provided. In this work, electrochemical corrosion behaviours of Sn-3Zn-xBi(x=0, 1, 3, 5, 7 wt%) alloys were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) techniques, to explore the effects of Bi on the corrosion performance of Sn-Zn alloys. The corrosion mechanism of Sn-Zn-Bi alloys was analysed through microstructure examination on the surface of alloys after corrosion measurements. Results indicated that the addition of 1 wt% Bi increased the corrosion susceptibility of the Sn-3Zn alloy, mainly attributed to the coarsened and more uniformly distributed corrosion-vulnerable Zn-rich precipitates, while further increasing the Bi contents decreased the corrosion susceptibility of Sn-3Zn-xBi alloys due to the higher fraction of nobler Bi particles serving as anodic barriers. The Sn-3Zn-7Bi possessed the best corrosion resistance among all Sn-Zn-Bi alloys investigated. The role of Bi on corrosion was considerably discussed. Recently, Sn-Zn-Bi alloys have been reported to be the sheath material for miniature detonating cords,due to appropriate mechanical properties, ease of manufacturing, and low cost. Bi addition was found beneficial to the mechanical performance of Sn-Zn. However, limited information about the influence of Bi on the corrosion properties of Sn-Zn alloys has been provided. In this work, electrochemical corrosion behaviours of Sn-3Zn-xBi(x = 0, 1, 3, 5, 7 wt%) alloys were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) techniques, to explore the effects of Bi on the corrosion performance of Sn-Zn alloys. The corrosion mechanism of Sn-Zn-Bi alloys was analysed through microstructure examination on the surface of alloys after corrosion measurements. Results indicated that the addition of 1 wt% Bi increased the corrosion susceptibility of the Sn-3Zn alloy, mainly attributed to the coarsened and more uniformly distributed corrosion-vulnerable Zn-rich precipitates, while further increasing the Bi contents decreased the corrosion susceptibility of Sn-3Zn-xBi alloys due to the higher fraction of nobler Bi particles serving as anodic barriers. The Sn-3Zn-7Bi possessed the best corrosion resistance among all Sn-Zn-Bi alloys investigated. The role of Bi on corrosion was considerably discussed.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第8期1618-1628,共11页 材料科学技术(英文版)
基金 Financial support from the National Aerospace Technology Exploitation Programme (NATEP) Chemring Energetics UK [grant number WEAF058]
关键词 Sn-Zn-Bi alloy Polarization EIS Zn-rich PRECIPITATE BI particles Sn-Zn-Bi alloy Polarization EIS Zn-rich precipitate Bi particles
  • 相关文献

同被引文献31

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部