期刊文献+

3D Object Detection Based on Vanishing Point and Prior Orientation 被引量:2

3D Object Detection Based on Vanishing Point and Prior Orientation
原文传递
导出
摘要 3D object detection is one of the most challenging research tasks in computer vision. In order to solve the problem of template information dependency of 3D object proposal in the method of 3D object detection based on 2.5D information, we proposed a 3D object detector based on fusion of vanishing point and prior orientation, which estimates an accurate 3D proposal from 2.5D data, and provides an excellent start point for 3D object classification and localization. The algorithm first calculates three mutually orthogonal vanishing points by the Euler angle principle and projects them into the pixel coordinate system. Then, the top edge of the 2D proposal is sampled by the preset sampling pitch, and the first one vertex is taken. Finally, the remaining seven vertices of the 3D proposal are calculated according to the linear relationship between the three vanishing points and the vertices, and the complete information of the 3D proposal is obtained. The experimental results show that this proposed method improves the Mean Average Precision score by 2.7% based on the Amodal3Det method. 3D object detection is one of the most challenging research tasks in computer vision. In order to solve the problem of template information dependency of 3D object proposal in the method of 3D object detection based on 2.5D information, we proposed a 3D object detector based on fusion of vanishing point and prior orientation, which estimates an accurate 3D proposal from 2.5D data, and provides an excellent start point for 3D object classification and localization. The algorithm first calculates three mutually orthogonal vanishing points by the Euler angle principle and projects them into the pixel coordinate system. Then, the top edge of the 2D proposal is sampled by the preset sampling pitch, and the first one vertex is taken. Finally, the remaining seven vertices of the 3D proposal are calculated according to the linear relationship between the three vanishing points and the vertices, and the complete information of the 3D proposal is obtained. The experimental results show that this proposed method improves the Mean Average Precision score by 2.7% based on the Amodal3Det method.
出处 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第5期369-375,共7页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China(61772328,61802253,61831018)
关键词 image analysis 3D OBJECT DETECTION prior ORIENTATION VANISHING point EULER ANGLE image analysis 3D object detection prior orientation vanishing point Euler angle
  • 相关文献

参考文献2

二级参考文献6

共引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部