期刊文献+

基于频带特征融合的GL-CNN遥感图像场景分类 被引量:2

Remote Sensing Image Scene Classification based on Frequency Band Feature Fusion and GL-CNN
原文传递
导出
摘要 高分辨率卫星遥感图像场景信息的分类对影像分析和解译具有重要意义,传统的高分辨卫星遥感图像场景分类方法主要依赖于人工提取的中、低层特征且不能很好的利用图像丰富的场景信息,针对这一问题,提出一种基于频带特征融合与GL-CNN(Guided Learning Convolutional Neural Network,指导学习卷积神经网络)的分类方法。首先通过NSWT(Non-Subsampled Wavelet Transform,非下采样小波变换)提取出图像的高低频子带,将高频子带进行频带特征融合得到融合高频子带,然后联合频谱角向能量分布曲线的平稳区间分析实现融合高频子带与低频子带的样本融合,最后指导卷积神经网络自动提取图像的高低频子带包含的高层特征来实现场景分类。通过对UCM_LandUse 21类数据进行试验表明,本文方法的分类正确率达到94.52%,相比以往算法有显著提高。 The classification of high-resolution satellite remote sensing image scene information is of great significance for image analysis and interpretation. The traditional high-resolution satellite remote sensing image scene classification method mainly relies on the artificially extracted middle and low-level features and can not make good use of image-rich scenes. In response to this problem,a classification method based on band feature fusion and GL-CNN(Guided Learning Convolutional Neural Network)is proposed. Firstly,the high-low frequency sub-band of the image is extracted by NSWT(Non-Subsampled Wavelet Transform),and then the high-frequency sub-band is fused to obtain the fused high-frequency sub-band,and then the angular energy distribution curve is combined. The stationary interval analysis realizes the fusion of the fusion high-frequency sub-band and the low-frequency sub-band,and finally guides the convolutional neural network to automatically extract the high-level features contained in the high-low frequency sub-band of the image to realize the scene classification.Experiments on UCM_LandUse 21 data show that the classification accuracy of this method reaches 94.52%,which is significantly improved compared with previous algorithms.
作者 崔先亮 陈立福 邢学敏 袁志辉 Cui Xianliang;Chen Lifu;Xing Xuemin;Yuan Zhihui(School of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha,410114,China)
出处 《遥感技术与应用》 CSCD 北大核心 2019年第4期712-719,共8页 Remote Sensing Technology and Application
基金 国家自然科学基金青年基金项目“基于机载双天线InSAR系统三维地形实时获取算法研究”(41201468) 国家自然科学基金青年基金项目“顾及流变参数的时序InSAR公路形变模型研究”(41701536),国家自然科学基金青年基金项目“面向复杂地形的多通道干涉SAR高精度DEM稳健反演研究”(61701047) 湖南省教育厅项目“高分辨率SAR图像复杂背景下高精度鲁棒的道路提取算法研究”(16B004)
关键词 非下采样小波变换 频带特征融合 指导学习 样本融合 场景分类 Non-subsampled wavelet transform Band feature fusion Guided learning Sample fusion Scene classification
  • 相关文献

参考文献10

二级参考文献83

  • 1赵鹏,倪国强.基于多尺度柔性形态学滤波器的图像融合[J].光电子.激光,2009,20(9):1243-1247. 被引量:4
  • 2付炜.基于特征级数据融合的遥感图像重构模式研究[J].电子学报,2005,33(6):1143-1145. 被引量:5
  • 3魏冠军,杨世瑜.基于主成份变换的多源遥感数据融合[J].兰州交通大学学报,2005,24(3):57-60. 被引量:12
  • 4Petrusca L, Cattin P, De Luca V, et al. Hybrid ultrasound/ magnetic resonance simultaneous acquisition and image fusion for motion monitoring in the upper abdomen [J]. Investigative Radiology, 2013, 48(5): 333-340.
  • 5Nasrin Amini, E Fatemizadeh, Hamid Behnam. MRI-PET image fusion based on NSCT transform using local energy and local variance fusion rules [J]. Journal of Medical Engineering & Technology, 2014, 38(4): 211-219.
  • 6Wang R, Du L. Infrared and visible image fusion based on random projection and sparse representation[J]. International Journal of Remote Sensing, 2014, 35(5): 1640-1652.
  • 7Wu Y H, Yah D, Ma M X, et al. An improved compressive sensing image fusion algorithm based on NSCT transform[J]. Applied Mechanics and Materials, 2014, 433: 306-309.
  • 8Van de Sande K E A,Gevers T,Snoek C G M. Evaluating colordescriptors for object and scene recognition[J]. IEEE Trans . onPattern Analysis and Machine Intelligence ,2010,32(9) : 1582 一 1596.
  • 9Li L J. Su H, Lim Y,et al. Objects as attributes for scene clas-sification[Mj // Kutulakos K N. Trends and topics in computervision . Berlin Heidelberg : Springer, 2012 : 57 - 69.
  • 10Cheriyadat A M. Unsupervised feature learning for aerial scene das-sification[J]. IEEE Trans . on Geoscience and Remote Sensing, 2014,52(1): 439 - 451.

共引文献424

同被引文献21

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部