期刊文献+

基于结构性字典学习的毛儿盖遥感图像去噪研究 被引量:6

Remote Sensing Image of Mao’ergai Denoising based on Structured Dictionary Learning
原文传递
导出
摘要 遥感图像的噪声分析、评估和滤波作为遥感图像处理的研究重点而一直受到遥感应用领域的关注。为了进一步提高遥感图像的去噪能力,提出一种新的基于聚类的组稀疏字典学习多光谱遥感图像去噪算法,该算法能够综合利用多光谱遥感图像的空间局部性和光谱的全局性,对遥感图像像素进行聚类后划分为不同的组,然后通过字典学习获得多光谱遥感图像的空间、光谱字典和系数。经过阈值处理后,对空间相似的块进行平均处理,实现了对多光谱遥感图像的去噪。该算法用于岷江上游植被和土壤类型典型地区--毛儿盖实验区遥感图像的去噪,峰值信噪比相比band-wise K-SVD算法提高了7.6%左右,同时具有更好的视觉效果。 The noise analysis,evaluation and denoising of remote sensing image are the focus of RSI processing. In order to improve the denoising ability of remote sensing image,presents a new structured dictionarybased method for multispectral image denoising based on cluster. This method incorporates both the locality of spatial and the correlation across spectrum of multispectral image. Remote sensing image was divided into different groups by clustering,and sparse representation coefficients of spatial and spectral and dictionary is obtained according to the dictionary learning algorithm. After threshold processing,the similar blocks are averaged and realized with multispectral remote sensing image denoising. This algorithm is applied to the denoising of remote sensing image of typical vegetation and soil types in the upper reaches of Minjiang river-Maoergai experimental area. Compared with the band-wise K-SVD algorithm,the PSNR of this algorithm can be improved by about7.6%,with better visual effect.
作者 秦振涛 杨茹 Qin Zhentao;Yang Ru(School of Mathematics and Computer Science ,Panzhihua College,Panzhihua,617000,China;School of Civil and Architecture Engineering,Panzhihua College,Panzhihua,617000,China)
出处 《遥感技术与应用》 CSCD 北大核心 2019年第4期793-798,共6页 Remote Sensing Technology and Application
基金 国家自然科学基金项目(41372340) 国土资源部地学空间信息技术重点实验室开放基金项目(KLGSIT2016-10) 攀枝花市科技项目(2018CY-G-28)
关键词 遥感图像 结构性字典学习 去噪 聚类 Remote sensing image Structured dictionary learning Denoising Cluster
  • 相关文献

参考文献7

二级参考文献61

  • 1唐彩虹,蔡利栋.椒盐噪声下图像原始直方图的估计[J].暨南大学学报(自然科学与医学版),2006,27(3):374-376. 被引量:3
  • 2仲伟波,宁书年,金声震,林捷.遥感成像噪声分析及基于PCNN的滤除方法[J].煤炭学报,2004,29(4):418-421. 被引量:8
  • 3高连如,张兵,张霞,申茜.基于局部标准差的遥感图像噪声评估方法研究[J].遥感学报,2007,11(2):201-208. 被引量:54
  • 4寻丽娜,方勇华,李新.高光谱图像中基于端元提取的小目标检测算法[J].光学学报,2007,27(7):1178-1182. 被引量:27
  • 5王大觊,榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社,2008.
  • 6PERONA P, MALIK J. Scale-space and Edge Detection Using Anisotropic Diffusion [J]. IEEE Trans on Pattern Anal Machine Intell, 1990,12(7) :629-639.
  • 7CATTE F, LION P L, MOREL J M, et al. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion [J]. SIAM Journal on Numerical Analysis, 1992, 29 (1):182-193.
  • 8ALVAREZ L,MOREL J M. Formalization and Computational Aspects of Image Analysis[J]. Acta Numerica, 1994 (3):1-59.
  • 9YOU Y L, KAVEH M. Fourth-order Partial Differential Equations for Noise Removal [J]. IEEE Trans on Image Processing, 2000,9 (10):1723-1729.
  • 10Chan J C W and Paelinckx D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery[J]. Remote Sensing of Environment, 2008, 112(6): 2999-3011.

共引文献126

同被引文献64

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部