摘要
为了解决主动配电网状态估计功能测试和验证缺乏方法和手段的问题,在电力系统仿真软件提供的状态估计功能模块的基础上,搭建了针对多种分布式电源接入的主动配电网状态估计功能测试平台。被测试主站导入测试平台基于模型标准导出的模型文件,满足模型一致型要求。测试平台基于主站注入法,将仿真软件提供的数据转化为标准规约数据,满足配电自动化主站模型接入数据的要求。以潮流计算结果叠加误差的方法为状态估计提供实验量测数据。搭建了包含多种分布式电源的主动配电网测试案例,针对提出的状态估计算法计算精度和坏数据处理能力评价指标进行计算,验证其有效性。在测试平台产生的大量测试案例和数据基础上,利用大数据分析方法针对状态估计算法给出了统计性评估指标,为主动配电网状态估计的功能测试提供了切实有效的手段。
In order to solve the problem that testing and verifying of state estimation for active distribution network is lack of feasible method and means,based on the state estimation function of power system simulation software,a test bed for state estimation functions for active distribution network with various types of distributed energy sources is established. The distribution automation master station imports the standard network model file generated by the test bed to keep the testing model consistent. Based on the host injection method,test bed converts the data provided by power system simulation software to standard protocol data for distribution automation master station. The test bed superimposes power flow results with noise signals as the measurement data for state estimation testing. An active distribution network test case including distributed energy resources has been established to calculate the indices presented for evaluating the precision of calculation and bad data handling capability. The effectiveness of the indices is verified by the test case.With numerous test cases and test data generated,the statistical evaluation index for the state estimation algorithm are given by using big data analysis method,which provides a feasible means for state estimation functional testing.
作者
王丰
李庆生
唐学用
凌万水
韩玘桓
WANG Feng;LI Qingsheng;TANG Xueyong;LING Wanshui;HAN Qihuan(Shanghai Wiscom Sunest Power Technology Co. , Ltd. , Shanghai 200233 , China;Power Grid Planning and Research Center of Guizhou Power Grid Co. , Ltd. , Guiyang 550003 Guizhou, China)
出处
《电力大数据》
2019年第9期65-71,共7页
Power Systems and Big Data
关键词
电力系统仿真软件
状态估计计算
测试框架
主动配电网
大数据分析
power system simulation software
state estimation
test bed
active distribution network
big data analysis