期刊文献+

多方向多尺度Gabor特征表示及其匹配算法 被引量:9

Multi-directional and Multi-scale Gabor Feature Representation and Its Matching Algorithm
下载PDF
导出
摘要 Gabor滤波是众所周知的一类特征提取方法,在机器视觉等领域得到了广泛研究和应用.本文提出了一种多方向多尺度Gabor特征表示、提取以及其匹配算法.多方向多尺度Gabor特征通过使用一组不同尺度和不同方向的Gabor滤波器对图像进行滤波,而后将滤波结果在各个滤波方向按尺度大小排序后连接而成.本文进一步提出了循环向量的概念,并将两个多方向多尺度Gabor特征相似度重新定义为一个多方向多尺度Gabor特征和对应的多个循环向量之间最大值.实验结果表明,本文提出的多方向多尺度Gabor特征不仅具有平移不变性、旋转不变性、尺度不变性,也展现出优秀的局部特征表示能力以及显著的鉴别力. Gabor filtering is a well-known feature extraction method,which has been widely studied and applied in the field of machine vision.This paper presents a new multi-directional and multi-scale Gabor feature representation,extraction and its matching algorithm.By using a set of Gabor filters with different scales and different directions to filter an image,the filtered results in each direction are reorganized in the order of the scales and concatenated into a multi-directional and multi-scale Gabor feature.We further propose the concept of cyclic vectors and redefine a similarity measure for multi-directional and multi-scale Gabor features as the maximum similarity value between one feature vector and the corresponding cyclic vectors.Our experimental results show that the proposed descriptor not only has the characteristics of translational invariance,rotational invariance,and scale invariance,but also embody the good feature representation ability and the significant discriminative strength for the local region descriptors in image.
作者 周德龙 张捷 朱思聪 ZHOU De-long;ZHANG Jie;ZHU Si-cong(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou,Zhejiang 310023,China;School of Design,Zhejiang University of Technology,Hangzhou,Zhejiang 310023,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第9期1998-2002,共5页 Acta Electronica Sinica
关键词 局部特征 循环向量 多方向多尺度Gabor特征 GABOR滤波器组 相似度 local feature cyclic vector multi-directional and multi-scale Gabor features Gabor filter bank similarity
  • 相关文献

参考文献9

二级参考文献177

  • 1马思伟,高文.基于率失真优化的视频编码研究(英文)[J].中国科学院研究生院学报,2007,24(1):137-143. 被引量:4
  • 2Tuytelaars T,Mikolajczyk K. Local invariant feature detectors:a survey [J]. Foundations and Trends in Computer Graphics andVision,2008,3(3):177 - 280.
  • 3Mikolajczyk K, Schmid C. Scale and affine invariant interestpoint detectors [ J ]. International Journal of Computer Vision,2004,60(1):63 - 86.
  • 4Lowe D. Distinctive image features from scale-invariant key-points[ J]. International Journal of Computer Vision, 2004,60(2):91- 110.
  • 5Bay H, Ess A,et al. Speeded-up robust features (SURF) [ J].International Journal on Computer Vision and Image Under-standing, 2008,110(3) :346 - 359.
  • 6Lindeberg T. Feature detection with automatic scale selection[J]. International Journal of Computer Vision, 1998,30(2) :79-116.
  • 7Heitger F,Rosenthaler L, et al. Simulation of neural contourmechanisms: from simple to end-stopped cells [j]. Vision Re-search, 1992,32(5) :963 - 981.
  • 8Wiiitz P,Lourens T. Comer detection in color images through amultiscale combination of end-stopped cortical cells [j]. Imageand Vision Computing,2000,18(6) :531 - 541.
  • 9Rodrigues J,Buf H. Multi-scale cortical keypoint representationfor attention and object detection[ A]. Proc of 2nd Iberian Con-ference on Pattern Recognation and Image Analysis [ C].Berlin : Springer,2005.255 - 262.
  • 10Csapo A,Roka A,Baranyi P. Visual cortex inspired vertex andcomer detection[A]. Proc of IEEE International Conference onMechatronics[ C]. Budapest : IEEE,2006.551 - 556.

共引文献125

同被引文献80

引证文献9

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部