摘要
本文研究了带有相依误差的函数型线性回归模型的复合分位数估计问题,其中误差来自短期相依和严平稳的线性过程.采用函数型主成分基函数对斜率函数和函数型预测变量进行展开并构造了斜率函数的估计,在相当宽松的条件下证明了斜率函数估计的最优收敛速度.最后通过理论模拟来评价所提出的方法,并给出了一个实际例子.
In this paper, we propose composite quantile regression for functional linear model with dependent data, in which the errors are from a short-range dependent and strictly stationary linear process. The functional principal component analysis is employed to approximate the slope function and the functional predictive variable respectively to construct an estimator of the slope function, and the convergence rate of the estimator is obtained under some regularity conditions. Simulation studies and a real data analysis are presented for illustration of the performance of the proposed estimator.
作者
翁羽玲
余平
张忠占
WENG Yuling;YU Ping;ZHANG Zhongzhan(College of Applied Sciences,Beijing University of Technology,Beijing,100124,China;Department of Statistics,Fudan University,Shanghai,200433,China;College of Mathematics and Computer Science,Shanxi Normal University,Linfen,041000,China)
出处
《应用概率统计》
CSCD
北大核心
2019年第4期360-372,共13页
Chinese Journal of Applied Probability and Statistics
基金
国家自然科学基金项目(批准号:11771032、11501018)资助
关键词
函数型线性模型
复合分位数回归
短期相依
严平稳
函数型主成分分析
functional linear regression models
composite quantile regression
short-range dependence
strictly stationary series
functional principal component analysis