期刊文献+

多特征的核线性判别分析推荐方法

Recommendation method based on multi-feature linear discriminant analysis of kernels
下载PDF
导出
摘要 为提高在非线性可分数据上的推荐质量,采用基于核函数的多特征线性判别分析建立推荐模型.基于多维特征数据,采用非线性映射转换到高维特征空间,通过构建基于核的映射函数,将特征映像转换为内积空间的特征子集,最终建立基于核函数的多特征线性判别分析的分类准则,对于用户喜好的物品进行分类判别并生成推荐.实验结果表明:在20%、40%、60%、80%的数据作为训练集,其余为测试集的实验条件下,随着推荐列表长度R的增加,推荐准确率呈现先升后降的趋势,在25≤R≤35区间内,能够取得最优的平均绝对误差0.34.所提方法与现有方法相比准确率平均提升18.01%,多样性平均提升42.29%,而所用时间开销仅增加6.21%.对历史偏好数据进行特征映射,有助于提高推荐准确率与多样性. To improve the quality of recommendation on non-linear separable data, a recommendation model based on multi-feature linear discriminant analysis of kernels is established. The nonlinear mapping is used to convert to high-dimensional feature space based on the multi-dimensional feature data. By constructing a kernel-based mapping function, the feature maping is transformed into a feature subset of the inner product space. Finally, a classification criterion of multi-feature linear discriminant analysis based on the kernel function is established. The user s preference items are separated and a recommendation structure is generated. Experimental results show that under the experimental conditions of 20%, 40%, 60%, and 80% data as training set and the rest as test set, with the increase of the recommendation list length R , the accuracy of recommendation increases first and then decreases. The optimal mean absolute deviation value of 0.34 can be obtained in the range of 25≤ R ≤35. Compared with the existing methods, the accuracy and the diversity of the proposed method increase by 18.01% and 42.29%, on average, and the time cost increases by only 6.21%. The feature mapping of historical preference data is helpful to improve the accuracy and the diversity of recommendation.
作者 高全力 高岭 石美红 朱欣娟 陈锐 赵雪青 Gao Quanli;Gao Ling;Shi Meihong;Zhu Xinjuan;Chen Rui;Zhao Xueqing(School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China;School of Information Science and Technology,Northwest University, Xi’an 710127, China)
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第5期883-889,共7页 Journal of Southeast University:Natural Science Edition
基金 国家重点研发计划资助项目(2018YFB1004501) 国家自然科学基金资助项目(61672426) 陕西省教育厅科学研究计划资助项目(18JX006)
关键词 核函数 线性判别分析 多特征融合 特征偏好 推荐方法 kernel function linear discriminant analysis multi-feature fusion feature preference recommendation method
  • 相关文献

参考文献4

二级参考文献50

  • 1高俊,徐永业,姚成.近红外光谱法测定汽油中的芳烃含量[J].南京工业大学学报(自然科学版),2005,27(3):51-53. 被引量:10
  • 2潘红艳,林鸿飞,赵晶.基于矩阵划分和兴趣方差的协同过滤算法[J].情报学报,2006,25(1):49-54. 被引量:16
  • 3Xue G,Lin C,Yang Q,et al.Scalable collaborative filtering using cluster-based smoothing.Proc.of the 28th annual int.ACM SIGIR Conf.on Research and Development in Information Retrieval.2005.
  • 4石昌显.结合用户背景信息的协同过滤推荐算法研究[学位论文].兰州:兰州大学,2009.
  • 5王稳寅.针对冷启动推荐的分布式协同过滤研究[学位论文].上海:上海交通大学,2012.
  • 6Lee TQ,Park Y,Park YT.A time-based approach to effective recommender systems using implicit feedback.Expert Systems with Applications,2008,34(4): 3055-3062.
  • 7O'Donovan J,Smyth B.Eliciting trust values from recommenda-tion errors.Proc.of the 18th Int.Florida Arti-ficial Intelligence Research Society Conference,2005.289-294.
  • 8郭艳红.推荐系统的协同过滤算法与应用研究[学位论文].大连:大连理工大学,2008.
  • 9Ziegler C,Georg L.Analyzing correlation between trust and user similarity in online communities.Proc.of Second International Conference on Trust Management.2004.
  • 10Liu F;Kong W W;Tian T.查看详情[J],{H}TRANSACTIONS OF THE ASABE2012(4):1631.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部