期刊文献+

两个同质动力学性态的Aihara神经元电突触耦合的完全同步

On Complete Synchronization of Two Identical Aihara Neurons Model via Electrical Synapse Coupling
下载PDF
导出
摘要 讨论两个同质动力学性态下的Aihara神经元耦合系统的状态完全同步问题.以主稳定函数为分析工具,首先通过数值模拟指出单个神经元处于混沌放电状态时,神经元对应的最大Lyapunov指数具有非负的性质;其次,对于两个Aihara神经元在电突触耦合下构成的系统,给出系统能实现状态完全同步的一个必要条件,利用系统的主稳定函数值绘制了2维参数平面的完全同步区域.数值仿真表明,过大或过小的耦合强度都不能使耦合系统达到状态的完全同步.最后,所设计的数值实例表明了理论结果的合理性和有效性. Complete synchronization of two identical dynamical Aihara neurons model has been discussed. Based on the Master Stability Function (MSF) analysis and numerical simulations, the property that the corresponding maximum Lyapunov exponents are non-negative has been presented firstly during the single neuron is in chaotic state. Secondly, a necessary condition for complete synchronization of two electrical coupled identical Aihara neurons has been given and the 2-dimensional parameter-space plot that displays the values of the MSF has been obtained numerically. The simulations show that complete synchronization cannot be reached if the coupling strength is taken too much or too few. Finally, reasonability and effectiveness of the theoretical results are verified by designed numerical examples.
作者 沙丽 杨丽 李绍林 SHA Li;YANG Li;LI Shao-lin(Department of Mathematics and Applied Mathematics, Honghe University, Mengzi Yunnan 661199, China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2019年第9期15-20,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 地方高校国家级大学生创新创业训练计划项目(201710687005) 红河学院第三批校中青年学术骨干培养对象(2016GG0308)
关键词 Aihara神经元 电突触耦合 完全同步 主稳定函数 平面同步区域 Aihara neuron electrical synapse coupling complete synchronization master stability function two-dimensional synchronized region
  • 相关文献

参考文献4

二级参考文献33

  • 1成雁翔,王光瑞.用非线性反馈实现混沌的同步化[J].物理学报,1995,44(9):1382-1389. 被引量:12
  • 2赵柏山,朱义胜.一种改进的混沌掩盖技术[J].电子与信息学报,2007,29(3):699-701. 被引量:9
  • 3戴志诚,汪秉文.基于混沌同步的保密通信[J].系统工程与电子技术,2007,29(5):699-702. 被引量:13
  • 4Bu S L, Wang S Q, and Ye H Q. An algorithm based on variable feedback to synchronize chaotic and hyperchaotic systems. Physica D: Nonlinear Phenomena, 2002, 164(1-2): 45-52.
  • 5Lu J H, Zhou T S, and Zhang S C. Chaos synchronization between linearly coupled chaotic systems. Chaos, Solitons and Fractals, 2002, 14(4): 529-541.
  • 6Chen M Y and Han Z Z. Controlling and synchronizing chaotic Genesio system via nonlinear feedback control. Chaos, Solitons and Fractals, 2003, 17(4): 709-716.
  • 7Zhu F L. The design of full-order and reduced-order adaptive observers for nonlinear Systems. 2007 IEEE International Conference on Control and Automation. Guangzhou, China, May 30 to June 1, 2007: 529-534.
  • 8Jiang Z P. A note on chaotic secure communication systems. IEEE Transactions on Circuits and Systems-Ⅰ, 2002, 49(1): 92-96.
  • 9Amel B, Thouraya K, and Jean-Claude V. On practical observers for nonlinear uncertain systems. Systems & Control Letters, 2008, 57(5): 371-377.
  • 10Zhou J and Meng J. Adaptive output control of a class of uncertain chaotic systems. Systems & Control Letters, 2007, 56(6): 452-460.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部