摘要
分布式路由算法广泛应用于认知无线电网络(CRNs)。为此,分析多跳CRNs的路由问题,利用无中心的Markov决策过程(DEC-POMDP)建立问题模型,并确保次级用户对主级用户的干扰少于预定阈值,进而控制端到端时延。最后引用多智能体学习算法解决此问题模型,进而形成基于多智能体学习的路由(MALR)。实验结果表明,提出的路由能够控制时延,并降低了干扰率。
The distributed routing algorithm is widely used in cognitive radio networks(CRNs). The distributed cooperative multi-agent routing problem in multi-hop CRNs is analyzed. The decentralized partially observable Markov decision process(DEC-POMDP)is used to establish the problem model,which can guarantee that the interference from secondary user to primary user is lower than the predefined threshold,and control the end-to-end delay. The multi-agent learning algorithm is introduced to deal with the problem model,so as to form the multi-agent learning-based routing(MALR). The experimental results show that the proposed routing can control the delay and reduce interference probability.
作者
王燕军
WANG Yanjun(School of Information Engineering,Henan University,Luoyang 471023,China)
出处
《现代电子技术》
北大核心
2019年第19期23-27,共5页
Modern Electronics Technique
基金
国家自然科学基金资助项目(61300215)~~