期刊文献+

基于加权稀疏非负矩阵分解的车脸识别算法 被引量:1

Vehicle Face Recognition Algorithm Based on Weighted and Sparse Nonnegative Matrix Factorization
下载PDF
导出
摘要 为提高多种光照条件下交通卡口视频中车脸识别的准确性,提出了一种基于改进非负矩阵分解的车脸识别算法.对采集图像进行预处理,获得车脸图像与车牌信息.基于特定光照条件,自适应提取车脸图像的初始特征.针对车脸图像中像素位置的重要性差异,建立了加权稀疏约束非负矩阵分解的特征降维方法.通过判断特征相似性与车牌信息一致性,确定车辆是否合法.实验结果表明所提算法具有较好的识别性能,真实接受率与错误拒绝率分别可达到0.987 5与0.04,并满足实时性要求. In order to improve the vehicle face recognition accuracy in traffic videos under various illumination conditions,a vehicle face recognition algorithm based on improved nonnegative matrix factorization(NMF)was proposed.The vehicle face image and license plate information were acquired after image preprocessing.The original feature of vehicle face image was extracted adaptively based on the special illumination condition.For the importance variation of different pixels in vehicle face image,a feature dimension reduction based on weighted and sparse NMF(WSNMF)was established.The vehicle legality can be defined by determining the similarity of features and the consistency of license plates.The experimental results showed that the proposed algorithm has better recognition performance,and genuine acceptance rate(GAR)and false rejection rate(FRR)can reach 0.9875 and 0.04,respectively,and meet the real-time requirements.
作者 石春鹤 吴成东 SHI Chun-he;WU Cheng-dong(School of Information Science & Engineering,Northeastern University,Shenyang 110819,China;School of Robot Science & Engineering,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第10期1376-1380,1391,共6页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61503274,61701101) 国家重点机器人工程项目(2017YFB1300900,2017YFB1301103) 沈阳市科技计划项目(17-87-0-00,18-013-0-15)
关键词 车脸识别 视频处理 车牌识别 非负矩阵分解 稀疏表示 vehicle face recognition video processing license plate recognition nonnegative matrix factorization sparse representation
  • 相关文献

参考文献2

二级参考文献18

  • 1Zhang P, Peng J, Dorneniconi C. Kernel pooled local subspaces for classification[J]. IEEE Transactions on System, Man and Cybernetics, 2005,35(3):489- 502.
  • 2Meng J E, Wu S Q, Lu J W, et al. Face rcognition with radial basis function ( RBF ) neural networks [J].IEEE Transactions on Neural Networks , 2002,13(3):697 -710.
  • 3Wu Q, Zhang H F, Jia W J, et al. Car plate detection using cascaded tree-style learner based on hybrid object features[C] //Proceedings IEEE International Conference on Video and Signal Based Surveillance. Sydney: Institute of Electrical and Electronics Engineers Computer Society, 2006:2141 -2145.
  • 4Wang L W, Wang X, Feng J F. On image matrix based feature extraction algorithms[J]. IEEE Transactions on Systems, Man and Cybernetics, 2003,41 (2) :79 - 389.
  • 5Yang J, David Z, Yang J Y. Is ICA significantly better than PCA for face recognition[C ] // Proceedings of the IEEE International Conference on Computer Vision. Washington D C: Institute of Electrical and Electronics Engineers Inc, 2005 : 198 -203.
  • 6Cao L J, Chua K S, Chong W K. A comparision of PCA, KPCA and ICA for dimensionality reduction in support vector machine[J]. Neurocomputing, 2003,55(2):321-336.
  • 7Lu C D, Zhang T Y, Du X Z, et al. A robust kernel PCA algorithm[C]//Proceedings of 2004 International Conference on Machine Learning and Cybernetics. Washington D C: Institute of Electrical and Electronics Engineers Inc, 2004: 3084 - 3087.
  • 8Scholkopf B, Smola A J, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [ J ]. Neural Computation, 1998(10):1299 1319.
  • 9余凯,贾磊,陈雨强,徐伟.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. 被引量:606
  • 10段建民,刘冠宇,郑榜贵.基于整体最优阈值的车道线快速识别方法[J].北京工业大学学报,2015,41(1):42-47. 被引量:6

共引文献35

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部