摘要
为提高多种光照条件下交通卡口视频中车脸识别的准确性,提出了一种基于改进非负矩阵分解的车脸识别算法.对采集图像进行预处理,获得车脸图像与车牌信息.基于特定光照条件,自适应提取车脸图像的初始特征.针对车脸图像中像素位置的重要性差异,建立了加权稀疏约束非负矩阵分解的特征降维方法.通过判断特征相似性与车牌信息一致性,确定车辆是否合法.实验结果表明所提算法具有较好的识别性能,真实接受率与错误拒绝率分别可达到0.987 5与0.04,并满足实时性要求.
In order to improve the vehicle face recognition accuracy in traffic videos under various illumination conditions,a vehicle face recognition algorithm based on improved nonnegative matrix factorization(NMF)was proposed.The vehicle face image and license plate information were acquired after image preprocessing.The original feature of vehicle face image was extracted adaptively based on the special illumination condition.For the importance variation of different pixels in vehicle face image,a feature dimension reduction based on weighted and sparse NMF(WSNMF)was established.The vehicle legality can be defined by determining the similarity of features and the consistency of license plates.The experimental results showed that the proposed algorithm has better recognition performance,and genuine acceptance rate(GAR)and false rejection rate(FRR)can reach 0.9875 and 0.04,respectively,and meet the real-time requirements.
作者
石春鹤
吴成东
SHI Chun-he;WU Cheng-dong(School of Information Science & Engineering,Northeastern University,Shenyang 110819,China;School of Robot Science & Engineering,Northeastern University,Shenyang 110819,China)
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第10期1376-1380,1391,共6页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(61503274,61701101)
国家重点机器人工程项目(2017YFB1300900,2017YFB1301103)
沈阳市科技计划项目(17-87-0-00,18-013-0-15)
关键词
车脸识别
视频处理
车牌识别
非负矩阵分解
稀疏表示
vehicle face recognition
video processing
license plate recognition
nonnegative matrix factorization
sparse representation