期刊文献+

基于加热炉多场耦合传热的板坯加热均匀性 被引量:6

Slab Heating Uniformity Based on Multi-field Coupling Heat Transfer in Reheating Furnace
下载PDF
导出
摘要 针对某钢厂步进式加热炉建立了炉内燃烧、烟气流动、烟气和钢坯传热的全耦合三维模型,采用动网格方法模拟钢坯运动.重点分析了炉内烟气与钢坯耦合传热、钢坯温度均匀性及不同垫块结构(一字型垫块、千岛式垫块、错位梁)时钢坯温度的分布规律.研究结果表明:所提加热炉数学模型能够准确描述炉内燃烧、湍流和传热过程;垫块结构对钢坯温度分布具有决定性影响,千岛式垫块、错位梁分别能减少40%和50%的黑印温差.该数学模型解决了步进梁、钢坯、垫块和水管立柱等复杂结构的钢坯运动问题和加热炉与钢坯的共轭传热问题. A three-dimensional model,which fully coupled the combustion,flue gas flow,flue gas and billet heat transfer in an eight-staged walking beam reheating furnace in a steel plant was established.The billet motion was simulated by the dynamic mesh method.The heat transfer between flue gas and billet in furnace,temperature uniformity and temperature distribution of billet under different cushion structures(i.e.,a column of cushion block,thousand island cushion block and dislocation beam)were analyzed.The results show that the proposed numerical model for reheating furnace can accurately simulate the combustion,turbulence and heat transfer processes.The structure of cushion block has a decisive influence on the temperature distribution of the billet.Thousand island cushion block and dislocation beam can reduce the temperature difference of skid marks by 40%and 50%,respectively.The numerical model can successfully solve the problems of billet movement and the coupled heat transfer between flue gas and billet for the complex structures like walking beam,billet,pad block and water pipe column in walking beam reheating furnace.
作者 齐凤升 王子松 李宝宽 QI Feng-sheng;WANG Zi-song;LI Bao-kuan(School of Metallurgy,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第10期1413-1418,共6页 Journal of Northeastern University(Natural Science)
基金 国家重点研发计划项目(2017YFB0304100)
关键词 步进式加热炉 炉内燃烧 耦合传热 黑印 数学模型 walking beam reheating furnace combustion in furnace coupled heat transfer skid marks numerical model
  • 相关文献

参考文献3

二级参考文献25

  • 1陈海耿 宁宝林.段法能量平衡方程组的主变量修正解法.东北工学院学报,1986,47(2):1-1.
  • 2Askeland D. The science and engineering of materials [ M ]. Stamford: Thomson Learning Inc, 2003 : 102 - 153.
  • 3Trinks W. Industrial furnaces[M]. Hoboken: John Wiley & Sons, 2004 : 1 - 50.
  • 4Jiang Q, Zhang C, Jiang J. An industrial reheating furnace with flue gas recirculation modeled by linear transfer functions [J ]. Combustion Science and Technology, 2004, 176 (9) : 1437- 1464.
  • 5Kim J G. Three-dimensional analysis of the walking-beam- type-slab reheating furnace in hot strip mills[J ]. Numerical Heat Transfer: Part A, 2000,38(6):589- 609.
  • 6Tang Y, Laine J, Fabrhius T, et al. The modeling of the gas flow and its influence on the scale accumulation in the steel slab pusher-type reheating fumace[J]. ISIJ International, 2003, 43(9) :1333 - 1341.
  • 7Jaklia A, Vode F, Toma Z, et al. Online simulation model of the slab-reheating process in a pusher-type fumace [ J ]. Applied Thermal Engineering, 2007,27 : 1105 - 1114.
  • 8Hottel H C, Cohen E S. Radiant heat transfer in a gas filled enclosure: allowance for non-uniformity of gas temperature [J]. AIChE Int J, 1958,4(1 ) :3 - 14.
  • 9Zhou H C, Han S D, Sheng F, et al. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: numerical studies[J ]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002,72:361 - 383.
  • 10Kim S H, Huh K Y. A new angular discretization scheme of the finite volume method for 3-D radiative heat transfer in absorbing, emitting and anistropically scattering media [ J ]. Heat and Mass Transfer, 2000,43:1233.

共引文献9

同被引文献40

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部