期刊文献+

收集振动能的摩擦纳米发电机设计与输出性能 被引量:17

Design and output performance of vibration energy harvesting triboelectric nanogenerator
下载PDF
导出
摘要 随着全球变暖和能源危机的到来,寻找减少碳排放的可再生能源成为人类文明面临的最紧迫挑战之一.振动作为一种常见的机械运动形式,在人们的日常生活中普遍存在.利用多种原理收集振动能量将其转化为电能成为研究热点.基于接触生电和静电感应原理的摩擦纳米发电机(TENG)为收集振动能量提供了一种可行的方法.本文设计了一种接触分离式 TENG.推导了 TENG 的电极间电压-转移电荷量-板间距离(V-Q-x)之间的关系,结合实验分析了负载电阻、振动频率等因素对其输出性能的影响关系,当振动频率为 1 6 Hz时,每个工作循环内电荷的转移量几乎相同,而电压和电流随着频率的增大而增大,频率为 5 Hz 时,最大输出功率达到 0.5 mW.运用 COMSOL 软件对 TENG 进行模拟仿真,揭示了其在接触分离过程中电势以及聚合物表面电荷密度的分布和变化规律,为高效收集振动能量的摩擦纳米发电机及自供能振动传感器设计提供理论与实践支撑. With the advent of global warming and energy crisis, the search for renewable energy to reduce carbon emissions has become one of the most urgent challenges. Ithas become a research hotspot to collect or harvest various mechanical energy in nature and convert it into electric energy. Vibration is a common form of mechanical movement in our daily life. It is visible both on most working machines and in nature and is a type of potential energy. There are several methods that can convert such mechanical energy into electric energy. Triboelectric nanogenerator (TENG) based on the principle of contact electrification and electrostatic induction which first appeared in 2012 by Zhonglin Wang provides a feasible method of efficiently collecting the vibrational energy with different vibrating frequencies. In this paper, a contact-separation mode of TENG is designed and implemented. The voltage- quantity of charge- distance(V-Q-x)relation of TENG is calculated. During the experiment, the factors such as load resistance, vibration frequency, etc. which affect the output performance, are considered and analyzed. An electrically driven crank-connecting rod mechanism is employed to provide the vibration source with adjustable frequency in a range of 1-6 Hz. The result shows that the amount of charge transfer in each working cycle remains almost unchanged, while the voltage and current increase with frequency increasing. When the frequency is 5 Hz, the best power matching resistance of the TENG is about 33 MW and the maximum output power reaches 0.5 mW. For a further study, a COMSOL software is used to simulate the distribution rule and variation rule of the electric potential in the contactseparation process, then the theoretical charge density and the experimental charge density on the polymer surface are compared and analyzed in order to provide theoretical and practical support for the design of TENG with collected vibration energy and self-powered vibration sensor. The result shows that the electric potential is proportional to the distance between two friction layers. While as the distance between two friction layers increases, the electric potential and the charge density both show a tendency to concentrate in the middle of the friction layer. The huge difference between experimental result and the simulation predicts thatmuch work should be done continually to improve the output of the TENG. Finally, the obtained results conduce to understanding the contact electrification and electrostatic induction mechanism and also provide a new method of harvesting the vibration energy.
作者 吴晔盛 刘启 曹杰 李凯 程广贵 张忠强 丁建宁 蒋诗宇 Wu Ye -Sheng;Liu Qi;Cao Jie;Li Kai;Cheng Guang -Gui;Zhang Zhong -Qiang;Ding Jian -Ning;Jiang Shi -Yu(Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2019年第19期13-20,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51675236) 国家自然科学基金重大研究计划(培育)(批准号:91648109)资助的课题~~
关键词 摩擦纳米发电机 输出性能 振动能量收集 接触分离 金属-聚合物 triboelectric nanogenerator output performance vibration energy harvesting contact separation metal-polymer
  • 相关文献

参考文献3

二级参考文献43

  • 1Wang ZL, Song JH. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312:242'-246.
  • 2Wang XD, Song JlrI, Liu J, Wang ZL. Direct current nanogenerator driven by ultrasonic wave. Science, 2007, 316:102-105.
  • 3Qin Y, Wang XD, Wang ZL. Microfiber-nanowire hybrid structure for energy scavenging. Nature, 2008, 451:809-813.
  • 4Xu S, Qin Y, Xu C, Wei YG, Yang RS, Wang ZL. Self-powered nanowire devices. Nat Nanotech, 2010, 5:366-373.
  • 5Zhu G, Yang RS, Wang SH, Wang ZL. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett, 2010, 10: 3151-3155.
  • 6Hu YF, Zhang Y, Xu C, Zhu G, Wang ZL. High output nanogenerator by rational unipolar-assembly of conical-nanowires and its application for driving a small liquid crystal display. Nano Lett, 2010, 10:5025-5031.
  • 7Zhu G, Wang AC, Liu Y, Zhou YS, Wang ZL. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett, 2012, 12:3086-3090.
  • 8Fan F, Tian ZQ, Wang ZL. Flexible triboelectric generator. Nano Energy, 2012, 1:328-334.
  • 9Wang SH, Lin L, Wang ZL. Nanoscale-triboelectric-effect enabled energy conversion for sustainably powering of portable electronics. Nano Lett, 2012, 12:6339-6346.
  • 10Zhu G, Pan CF, Guo WX, Chen CY, Zhou YS, Yu RM, Wang ZL. Triboelectric-generator-driven pulse electrodeposition for micro-patterning. Nano Lett, 2012, 12:4960-4965.

共引文献33

同被引文献113

引证文献17

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部