期刊文献+

基于金字塔池化网络的道路场景深度估计方法 被引量:8

Depth Estimation of Monocular Road Images Based on Pyramid Scene Analysis Network
下载PDF
导出
摘要 针对从单目视觉图像中估计深度信息时存在的预测精度不够准确的问题,该文提出一种基于金字塔池化网络的道路场景深度估计方法。该方法利用4个残差网络块的组合提取道路场景图像特征,然后通过上采样将特征图逐渐恢复到原始图像尺寸,多个残差网络块的加入增加网络模型的深度;考虑到上采样过程中不同尺度信息的多样性,将提取特征过程中各种尺寸的特征图与上采样过程中相同尺寸的特征图进行融合,从而提高深度估计的精确度。此外,对4个残差网络块提取的高级特征采用金字塔池化网络块进行场景解析,最后将金字塔池化网络块输出的特征图恢复到原始图像尺寸并与上采样模块的输出一同输入预测层。通过在KITTI数据集上进行实验,结果表明该文所提的基于金字塔池化网络的道路场景深度估计方法优于现有的估计方法。 Considering the problem that the prediction accuracy is not accurate enough when the depth information is recovered from the monocular vision image,a method of depth estimation of road scenes based on pyramid pooling network is proposed.Firstly,using a combination of four residual network blocks,the road scene image features are extracted,and then through the sampling,the features are gradually restored to the original image size,and the depth of the residual block is increased.Considering the diversity of information in different scales,the features with same sizes extracted from the sampling process and the feature extraction process are merged.In addition,pyramid pooling network blocks are added to the advanced features extracted by four residual network blocks for scene analysis,and the feature graph output of pyramid pooling network blocks is finally restored to the original image size and input prediction layer together with the output of the upper sampling module.Through experiments on KITTI data set,the results show that the proposed method is superior to the existing method.
作者 周武杰 潘婷 顾鹏笠 翟治年 ZHOU Wujie;PAN Ting;GU Pengli;ZHAI Zhinian(School of Information and Electronic Engineering,Zhejiang University of Science and Technology,Hangzhou 310023,China;College of Information Science and Electronic Engineering,Zhejiang University,Hangzhou 310027,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第10期2509-2515,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61502429) 浙江省自然科学基金(LY18F0002)~~
关键词 单目视觉 深度估计 神经网络 金字塔池化网络 Monocular vision Depth estimation Neural network Pyramid pooling network
  • 相关文献

同被引文献46

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部