期刊文献+

变指数二进鞅空间上二进求导极大算子有界性研究(英文)

The Boundedness of Maximal Dyadic Derivative Operator on Dyadic Martingale Hardy Space with Variable Exponents
下载PDF
导出
摘要 本文研究变指数二进鞅空间理论.借助于对数Holder连续的等价刻画,得到Doob不等式.借助于变指数鞅空间的原子分解理论,证明二进求导极大算子的有界性,上述结果推广了经典情形结论. In this paper, we research dyadic martingale Hardy space with variable exponents. By the characterization of log-Holder continuity, the Doob's inequality is derived. Moreover, we prove the boundedness of maximal dyadic derivative operator by the atomic decomposition of variable exponent martingale space, which generalizes the conclusion in classical case.
作者 张传洲 夏绮 张学英 ZHANG Chuanzhou;XIA Qi;ZHANG Xueying(College of Science, Wuhan University of Science and Technology, Wuhan 430065, China)
出处 《应用数学》 CSCD 北大核心 2019年第4期910-919,共10页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(61671338,11871195)
关键词 变指数 二进导数 原子分解 Martingale Variable exponent Dyadic derivative Atomic decomposition
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部