期刊文献+

一类C-M型功能反应的时滞随机捕食系统的性态

Behavior of Same Class Time-Delay Stochastic Predator-Prey Systems with C-M Functional Type Response
下载PDF
导出
摘要 针对一类具有Crowley-Martin型功能反应的时滞随机捕食系统,运用It公式、Lyapunov函数方法和Chebyshev不等式,讨论了系统正解的全局存在唯一性及系统解的随机最终有界性;运用随机比较定理获得了系统中食饵和捕食者种群的灭绝及平均持续生存的充分条件. For a class of time-delay stochastic predator-prey systems with Crowley-Martin type functional response,the global existence and uniqueness of the positive solution of the system and the stochastic final boundedness of the system solution are discussed by using It formula、Lyapunov function method and Chebyshev inequality,sufficient conditions for the extinction and average persistence of prey and predator in the system are obtained by using stochastic comparison theorem.
作者 严珊珊 郑唯唯 YAN Shanshan;ZHENG Weiwei(School of Science,Xi’an Polytechnic University,Xi’an Shanxi 710048,China)
出处 《鞍山师范学院学报》 2019年第4期1-7,共7页 Journal of Anshan Normal University
基金 国家自然科学基金青年科学基金资助项目(11501434)
关键词 时滞 随机扰动 It公式 LYAPUNOV函数方法 随机最终有界 Time delay Stochastic perturbation It formula Lyapunov function method Stochastically ultimately bounded
  • 相关文献

参考文献2

二级参考文献23

  • 1LIU M, WANG K. Global stability of a nonlinear sto- chastic predator- prey system withBeddington -DeAngel is functional response[J]. Commun. Nonlinear Sci. Nu- met. Simulat,2011, (16) : 1114 - 1121.
  • 2LIU X Q, ZHONG S M, TIAN B D, et al. Asymptotic properties of a stochastic predato - rprey model with Crowley - Martin functional response [ J ]. Journal of Ap- plied Mathematics and Computing, 2013, ( 43 ) : 479 - 490. L.
  • 3V J, WANG K. Asymptotic properties of a stochastic predator - prey system with Hollin - g II functional re- sponse[ J]. Commun Nonlin - ear Sci Numer Simulat, 2011, (16) : 4037 -4048.
  • 4JIANG D Q, SHI N, LI X. Global stabilit-y and sto- chastic permanence of a non - autono - mous logistic e- quation with random perturba - tion[ J]. Journal of Math- ematical Analysis and Applications, 2008, 340 : 588 - 597.
  • 5LIU M, WANG K. Global asymptotic sta - bility of a sto- chastic Lotka - Voherra model wi - th infinite delays [ J ]. Cornmun Nonlinear Sci Numer Simulat, 2012, ( 17 ) : 3115 -3123.
  • 6LIU M, WANG K. On a stochastic logist - ic equation with impulsive perturbations [ J] . Computers and Mathe- matics with Applica - tions, 2012, (63) : 871 - 886.
  • 7LIU M, WANG K. Persistence and exti -nction in sto- chastic nonautonomous logistic systems [J ]. Journal of Mathematical Analysis and Applications, 2011, 375: 443 - 457.
  • 8JI C, JIANG D Q, LI X. Qualitative ana - lysis of a sto- chastic ratiodependent predator - prey system [ J ]. Jour- nal of Computational and Applied Mathematics, 2011, 235 : 1326 - 1341.
  • 9LIU X Q, ZHONG S M, ZHONG F L, et al. Propeies of a stochastic predatorprey system with Holling II func- tionalresponse[J]. Inter. J. Math. Sci., 2013,(7): 73 - 79.
  • 10MAO X. Stochastic Differential Equations and Applica- tions [ M ]. Chichester, England : H - orwood Publish- ing, 1997.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部