摘要
针对一类具有Crowley-Martin型功能反应的时滞随机捕食系统,运用It公式、Lyapunov函数方法和Chebyshev不等式,讨论了系统正解的全局存在唯一性及系统解的随机最终有界性;运用随机比较定理获得了系统中食饵和捕食者种群的灭绝及平均持续生存的充分条件.
For a class of time-delay stochastic predator-prey systems with Crowley-Martin type functional response,the global existence and uniqueness of the positive solution of the system and the stochastic final boundedness of the system solution are discussed by using It formula、Lyapunov function method and Chebyshev inequality,sufficient conditions for the extinction and average persistence of prey and predator in the system are obtained by using stochastic comparison theorem.
作者
严珊珊
郑唯唯
YAN Shanshan;ZHENG Weiwei(School of Science,Xi’an Polytechnic University,Xi’an Shanxi 710048,China)
出处
《鞍山师范学院学报》
2019年第4期1-7,共7页
Journal of Anshan Normal University
基金
国家自然科学基金青年科学基金资助项目(11501434)
关键词
时滞
随机扰动
It公式
LYAPUNOV函数方法
随机最终有界
Time delay
Stochastic perturbation
It formula
Lyapunov function method
Stochastically ultimately bounded