摘要
LEE证明了超立方体图Qn存在完备码当且仅当n=2m-1(m≥2是自然数),当且仅当它是完全图Kn+1的正则覆盖.本文中,给出了这个结论的一个简单证明,并把这个结论推广到了初等交换群的凯莱图中.证明了初等交换p-群Zp^n(这里p是奇素数)的凯莱图有完备码当且仅当n=(p^m-1)/2(这里m是自然数且n≥2),当且仅当它是完全图K2n+1的正则覆盖.
LEE proved that Q n has a perfect code if and only if n=2 m- 1 for some integer m≥2, if and only if it is a regular covering of K n+1 .In this paper,we give a short simple proof of LEE’s result and generalize it to Cayley graphs of elementary Abelian groups.We show that a Cayley graph of an elementary Abelian p -group Zp^n has a perfect code if and only if n=(p^ m-1)/2 for some integer m and n≥2 , if and only if it is a regular covering of K2n+1 .
作者
张星
王燕
ZHANG Xing;WANG Yan(School of Mathematics and Information Sciences, Yantai University, Yantai 264005, China)
出处
《烟台大学学报(自然科学与工程版)》
CAS
2019年第4期307-310,共4页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
国家自然科学基金资助项目(11671347,61771019)
山东省自然科学基金资助项目(ZR2017MAO22)
关键词
完备码
初等交换群
凯莱图
正则覆盖
perfect code
elementary Abelian group
Cayley graph
regular covering