期刊文献+

实时微博谣言的未来传播范围评估方法 被引量:2

Method for evaluating future spread of real-time Weibo rumors
下载PDF
导出
摘要 为找出可能在未来广泛传播的微博谣言,提出将谣言实时识别和谣言传播范围评估相结合的方法。建立实时谣言识别模型,在微博消息发出时刻提取特征进行实时谣言识别;基于改进的用户影响力算法建立谣言传播范围评估模型;按评估周期采用谣言传播范围评估模型对谣言在发出后的传播范围进行评估。实验结果表明,实时谣言识别方法具有较高的准确率,基于改进的用户影响力算法比基于PageRank算法提出的谣言传播范围评估模型更加合理地预评估了谣言的传播范围,可得到在发布后可能会广泛传播的谣言。 To find rumors in Micorblog that may be spread widely in the future,a method of combining real-time rumor detection and the evaluation of rumor spread was proposed.A real-time rumor recognition model was established,and features were extracted for real-time rumor recognition at the moment when the Microblog message was sent.Based on the improved user influence algorithm,the rumor propagation range evaluation model was established.Rumors were evaluated using the rumor propagation range evaluation model according to the evaluation cycle.Experimental results show that the real-time rumor recognition method has high accuracy.The rumor propagation range evaluation model based on the improved user influence algorithm is more reasonable than that based on PageRank algorithm,and eventually the rumors that may be widely spread after the release are got.
作者 马晓宁 梁晓菡 MA Xiao-ning;LIANG Xiao-han(College of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China)
出处 《计算机工程与设计》 北大核心 2019年第10期2785-2790,共6页 Computer Engineering and Design
基金 中央高校基本科研业务费中国民航大学专项基金项目(3122014C018) 中国民航大学科研启动费基金项目(09QD02X)
关键词 实时谣言识别 用户影响力 消息传播 支持向量机 PAGERANK算法 real-time rumor detection user influence information diffusion support vector machine(SVM) PageRank algorithm
  • 相关文献

参考文献4

二级参考文献35

  • 1Allport G W, Postman L. The Psychology of Rumor. Oxford:Henry Holt, 1947.
  • 2Kapferer J-N. Rumeurs:le Plus Vieux Média du Monde (in French). Paris:Le Seuil Editions, 1987.
  • 3Peterson W A, Gist N P. Rumor and public opinion. American J Soc, 1951, 57:159-167.
  • 4Budak C, Agrawal D, Abbadi A El. Limiting the spread of misinformation in social networks. In:Proceedings of the 20th International Conference on World Wide Web, Byderabad, 2011. 665-674.
  • 5Castillo C, Mendoza M, Poblete B. Information credibility on twitter. In:Proceedings of the 20th International Conference on World Wide Web, Byderabad, 2011. 675-684.
  • 6Nguyen D T, Nguyen N P, Thai M T. Sources of misinformation in online social networks:who to suspect? In:Proceedings of Military Communications Conference. Orlando:IEEE, 2012. 1-6.
  • 7Okazaki N, Nabeshima K, Watanabe K, et al. Extracting and aggregating false information from microblogs. In:Proceedings of the Workshop on Language Processing and Crisis Information, Nagoya, 2013. 36-43.
  • 8Qazvinian V, Rosengren E, Radev D R, et al. Rumor has it:identifying misinformation in microblogs. In:Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2011. 1589-1599.
  • 9Ratkiewicz J, Conover M, Meiss M, et al. Truthy:mapping the spread of astroturf in microblog streams. In:Proceedings of the 20th International Conference Companion on World Wide Web, Byderabad, 2011. 249-252.
  • 10Liao Q Y, Shi L. She gets a sports car from our donation:rumor transmission in a chinese microblogging community. In:Proceedings of the 2013 Conference on Computer Supported Cooperative Work. San Antonio:ACM, 2013. 587-598.

共引文献108

同被引文献19

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部