期刊文献+

基于多模型融合的人体行为识别模型 被引量:8

Human behavior recognition model based on multi model fusion
下载PDF
导出
摘要 对用户的行走、上楼、下楼、静坐、站立、躺下6种行为状态产生的陀螺仪传感器数据进行研究。通过分析局部时间段内用户的状态信息,扩充样本数据维度,将卷积神经网络模型和长短期记忆网络模型相结合,构建特征提取器,使用线性支持向量机完成分类工作。行为识别精度达到99.4%以上,每一种的行为状态识别精度均超过98%。相比于多层感知机、卷积神经网络以及长短期记忆网络,平均识别精度提升了1%-2%。相比传统的机器学习算法,例如贝叶斯、支持向量机、决策树等,平均识别精度提升了3%-4%。 The gyroscope sensor data produced by six behavior states of users,walking,upstairing,downstairing,sitting,standing and lying down,were studied.By analyzing the state information of users in local time interval,expanding the dimension of sample data,combining convolution neural network model with long short-term memory network model,a feature extractor was constructed,and the classification was completed using linear support vector machine.The accuracy of behavior recognition is over 99.4%,and the accuracy of each action state recognition is over 98%.Compared with multi-layer perceptron,convolution neural network and long short-term memory network,the average recognition accuracy is improved by 1%-2%.Compared with traditional machine learning algorithms,such as Bayesian,support vector machine and decision tree,the average recognition accuracy is improved by 3%-4%.
作者 余万里 韦玉梅 李鲁群 YU Wan-li;WEI Yu-mei;LI Lu-qun(College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 201400,China)
机构地区 上海师范大学
出处 《计算机工程与设计》 北大核心 2019年第10期3030-3036,共7页 Computer Engineering and Design
基金 2018年度大学生创新创业训练计划基金项目(201810270167)
关键词 卷积神经网络 长短期记忆网络 人体行为识别 深度学习 模型融合 convolution neural network long short-term memory network human activity recognition deep learning model fusion
  • 相关文献

参考文献1

二级参考文献68

  • 1LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 2HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 3LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 4HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 5KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 6GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.
  • 7LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440.
  • 8SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf.
  • 9SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8.
  • 10HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [EB/OL]. [2016-01-04]. https://www.researchgate.net/publication/286512696_Deep_Residual_Learning_for_Image_Recognition.

共引文献558

同被引文献59

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部