期刊文献+

面向大数据的增量式RBF学习算法 被引量:2

RBF Incremental Learning Algorithm for Big Data
下载PDF
导出
摘要 "大数据"背景下,如何处理庞大数据成为众多企业关注的热点。文章提出了一种新的在线处理大数据的方法,利用数学中的分块矩阵定理对径向基函数进行处理,从在线处理大数据的角度思考,利用增量学习算法原理推导出径向基函数(RBF)增量学习算法模型,为大数据的增量算法提供一种新思路,并利用实际算例加以检验。实验表明,相对于传统的一次性建模的方法,所提出的增量式RBF算法能在保证不影响建模精度的前提下明显地缩短处理大数据的时间。 Under the background of Big Data, how to deal with the huge data has became the focus of attention of many enterprises. This paper presents a new method of online data processing, which uses the partition matrix theorem in mathematics to process radial basis function(RBF). Considering from the perspective of processing big data online, the paper uses the principle of incremental learning algorithm to deduce the incremental RBF learning model, providing a new idea for incremental algorithm of big data. Finally, a practical example is used to make verification. Experimental results show that compared with the traditional one-off modeling method, the proposed incremental RBF algorithm can significantly shorten the processing time of big data without affecting the modeling accuracy.
作者 周晓剑 侯蓉 Zhou Xiaojian;Hou Rong(School of Management,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《统计与决策》 CSSCI 北大核心 2019年第18期68-71,共4页 Statistics & Decision
基金 国家自然科学基金青年项目(71401080)
关键词 大数据 径向基函数(RBF) 增量学习算法 big data radial basis function(RBF) incremental learning algorithm
  • 相关文献

参考文献3

二级参考文献29

  • 1李香莲.汽车微弱振动信号的混沌振子识别[J].应用力学学报,2005,22(4):628-632. 被引量:3
  • 2Vapnik V.N..The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 3Cherkassky V.,Mulier F..Learning From Data-Concepts,Theory and Methods.New York:John Wiley Sons,1998
  • 4Joachims T..Text Categorization with support vector machines:Learning with Many Relevant Features.In:Proceedings of the European Conference on Machine Learning (ECML),1998,137~142
  • 5Guyon I.,Weston J.,Barnhill S..Gene selection for cancer classification using support vector machines.Machine Learning,2002,46(1):389~422.
  • 6Kivinen J.,Smola A.,Williamson R..Online learning with kernels.In:Diettrich T.G.,Becker S.,Ghahramani Z.eds..Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2002,785~793
  • 7Ralaivola L.et al..Incremental support vector machine learning:A local approach.In:Proceedings of the International on Conference on Artificial Neural Networks,Vienna,Austria,2001,322~329
  • 8Ruping S..Incremental learning with support vector machines.Dortmund University,Dortmund:Technical Report TR 18,2002
  • 9Martin M..On-line support vector machines for function approximation.Politecnica University,Catalunya,Spain:Technical Report LSI-02-11-R,2002
  • 10Kuh A..Adaptive kernel methods for CDMA systems.In:Proceedings of the International Joint Conference on Neural networks(IJCNN.2001),Washington DC,2001,1404~1409

共引文献137

同被引文献39

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部