期刊文献+

Two RING-Finger Ubiquitin E3 Ligases Regulate the Degradation of SPX4, An Internal Phosphate Sensor, for Phosphate Homeostasis and Signaling in Rice 被引量:16

原文传递
导出
摘要 SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing,signaling,and transport in eukaryotes.In plants,SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators,the PHOSPATE STARVATION RESPONSE proteins (PHRs).The stability of SPXs,such as SPX4,is reduced under Pi-deficient conditions.However,the mechanisms by which SPXs are degraded remain unclear.In this study,using a yeast-twhybrid screen we iden.tified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation,designated SDEL1 and SDEL2,which were post-transcriptionally induced by Pi starvation.We found that both SDELs were located in the nucleus and cytoplasm,had ubiquitin E3 ligase activity,and directly ubiquitinated the K^213 and K^299 lysine residues in SPX4 to regulate its stability.Furthermore,we found that PHR2,a Pi central regulator in rice,could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions,which protected SPX4 from ubiquitination and degradation.Consistent with the biochemical function of SDEL1 and SDEL2,overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions.Conversely,their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling.Collectively,our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice.
出处 《Molecular Plant》 SCIE CAS CSCD 2019年第8期1060-1074,共15页 分子植物(英文版)
基金 funded by grants from the National Key Research and Development Program of China (2016YFD0100705-1) the National Natural Science Foundation of China (31801925,31772386,and 31601807) Ningbo Department of Science and Technology (2016C11017) KY was supported by the Innovation Program of Chinese Academy of Agricultural Sciences.
分类号 Q [生物学]
  • 相关文献

参考文献2

二级参考文献14

  • 1Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics. 188, 773-782.
  • 2Congo L., Ran, F.A.. Cox. D., Lin, S., Barretto, R., Habib, N., Hsu, P.O., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPRlCas systems. Science 339, 819-823.
  • 3Gaj, T., Gersbach, C.A., and Barbas, C.F., III (2013). ZFN, TALEN, and CRISPRlCas-based methods for genome engineering. Trends Biotechno/. 31, 397-405.
  • 4Huang, V.S., and u, H.M. (2009). Arabidopsis CHLl2 can substitute for CHLl1. Plant Physio/. 150, 636-645.
  • 5Jinek. M . Chylinski. K . Fonfara. I.. Hauer. M . Doudna. J.A . and Charpentier. E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337. 816-821.
  • 6Li, T . Liu. B . Spalding. M.H . Weeks. D.P.. and Yang. B. (2012). High-efficiency TALEN-based gene editing produces diseaseresistant rice. Nat. Biotechnol. 30. 390-392.
  • 7Mahfouz. M.M . Li, L.. Shamimuzzaman. M . Wibowo. A . Fang. X . and Zhu. J.K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc. Natl Acad. Sci. USA. 108,2623-2628.
  • 8Symington, L.S . and Gautier, J. (2011). Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 4S, 247-271.
  • 9Zhang, Y., Zhang, F., u, X., Baller, J.A., Qi. Y., Starker, c.e . Bogdanove, AJ., and Voytas, D.F. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol161, 20-27.
  • 10Annett Strauβ Thomas Lahaye.Zinc Fingers, TAL Effectors, or Cas9-Based DNA Binding Proteins: What's Best for Targeting Desired Genome Loci?[J].Molecular Plant,2013,6(5):1384-1387. 被引量:6

共引文献411

同被引文献110

引证文献16

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部