期刊文献+

一种改进的彩色图像去马赛克总变分模型 被引量:3

An Improved Color Image Demosaicking Total Variational Model
下载PDF
导出
摘要 针对去马赛克总变分正则化模型的不足,提出了一种改进的彩色图像去马赛克总变分模型,将彩色图像的灰度化图像引入到传统彩色图像去马赛克总变分正则化模型中,利用原始对偶不动点算法求解该模型.数值实验结果表明了该模型和算法的有效性和优越性. An improved model is proposed for making up for the deficiency of the demosaicking total variational regularization model.The grayscale image of the color image is introduced into the traditional demosaicking total variational regularization model.The primal-dual fixed point algorithm is used to deal with the above model.Experimental results show that the effectiveness and advantages of the model.
作者 刘铭丽 王希云 LIU Ming-li;WANG Xi-yun(College of Applied Sciences,Taiyuan University of Science and Technology,Taiyuan 030024,Shanxi,China)
出处 《山西师范大学学报(自然科学版)》 2019年第3期25-29,共5页 Journal of Shanxi Normal University(Natural Science Edition)
基金 山西省自然科学基金(2008011013) 山西省“131”领军人才工程项目
关键词 去马赛克 总变分 灰度图像 原始对偶不动点算法 demosaicking total variation grayscale images the primal-dual fixed point algorithm
  • 相关文献

参考文献2

二级参考文献11

  • 1Donoho D L. Compressed sensing [ J ]. IEEE Trans. Inf. Theory, 2006,52 (4) : 1289-1306.
  • 2] Gemmeke J F, Cranen B. Noise reduction through com- pressed sensing[ C ]//Australia, Brisbane : Proc. of inter- speech,2008 : 1785-1788.
  • 3Haupt J, Castro R,Nowak R,et al. Compressive sampling for signal classification [ C ]//Pacific Grove, CA :Proc. AsilomarConf. Signals, Systems, Computers ,2006:1430-1434.
  • 4Gemmeke J F, hamme H V, Cranen B, et al. Compressive sensing for missing data imputation in noise robust speech recognition [ J ]. IEEE Journal of Selected Topics in Signal Processing,2010,4 (2) :272-287.
  • 5Yang J C, Wright J, Huang T S, et al. Image super-reso- lution via sparse representation [ J ]. IEEE Trans. Signal Proc. , 2010,19 ( 11 ) :2861-2873.
  • 6Elad M, Figueiredo M A T, Ma Y. On the role of sparse and redundant representations in image processing [ J ]. Proc. IEEE ,2010,98 (6) :972-952.
  • 7Donoho D L. For most large underdetermined systems of linear equations the minimal ll-norm near solution ap- proximates the sparsest solution [ J ]. Commun. Pure Ap- pl. Math. ,2006,59(10) :907-934.
  • 8Chen S S, Donoho D L, Saunders M A. Atomic decompo- sition by basis pursuit[ J ]. SIAM J. Sci. Comput. , 1995, 20( 1 ) :33-61.
  • 9Baron D, Wakin M B, Duarte M F, et al. Distributed com- pressed sensing [ R ]. Houston : Rice University, Depart- ment of Electrical and Computer Engineering,2006.
  • 10Aharon M,Elad M,Bruckstein A M. The K-SVD:An algo- rithm for designing of overcomplete dictionaries for sparse representation [ J ]. IEEE Trans. Signal Proc. , 2006, 54 (11).

共引文献3

同被引文献14

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部