期刊文献+

自适应多分类相关向量机的滚动轴承故障识别 被引量:4

Adaptive Multiclass Relevance Vector Machines and its Application to Fault Recognition of Rolling Bearing
下载PDF
导出
摘要 提出了一种基于自适应相关向量机(Adaptive multiclass relevance vector machines,A-MRVM)的滚动轴承故障识别方法,该方法利用遗传算法对多分类相关向量机核函数参数进行优化,依据故障样本自身特性自适应地选取最优核参数,克服核参数人为选取的不确定性,从而构建基于自适应多分类相关向量机的故障识别模型。将该故障识别模型应用于滚动轴承故障识别中,分别提取滚动轴承振动信号小波包能量及EEMD(Ensemble empirical mode decomposition)能量作为故障特征进行故障识别,并与其它方法进行实验对比研究。实验结果表明,所提方法不仅能有效识别出故障类型,且具有较高的故障识别模型构建效率,验证了所提方法的可行性及优越性。同时,该方法也能对故障类型发生的可能性进行评估,为分析滚动轴承故障类型提供更多的参考信息。 A novel method of rolling bearing fault detection based on adaptive multiclass relevance vector machines,(A-MRVM) was proposed.Genetic algorithm (GA) was used to optimize MRVM kernel function parameters adaptively,according to the characteristics of fault samples,to solve the uncertainty of artificial parameter selections.Therefore,a novel fault recognition model was constructed based on adaptive multiclass relevance vector machine.The fault identification model was applied in the rolling bearing fault identification experiment.The wavelet packet energies and ensemble empirical mode decomposition (EEMD) energies of rolling bearing vibration signal were extracted respectively as fault features.The fault recognition contrast experiments were implemented using different identification methods.Experimental results indicated that the proposed method can identify the fault type effectively,and verified the method was feasible and superior.Additionally,the method can give more available data to evaluate the possibility of fault type.
作者 王波 王志乐 张青 张健康 熊鑫州 Wang Bo;WangZhile;Zhang Qing;Zhang Jiankang;Xiong Xinzhou(School of Mechanical and Automotive Engineering,Chuzhou University,Anhui Chuzhou 239000,China)
出处 《机械科学与技术》 CSCD 北大核心 2019年第10期1535-1541,共7页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51575331) 安徽省高校自然科学研究重点项目(KJ2019A0646) 滁州学院科研启动基金项目(2016QD08)资助
关键词 故障识别 滚动轴承 多分类相关向量机 自适应 遗传算法 fault detection rolling bearing multiclass relevance vector machines adaptive genetic algorithms EEMD experiments wavelet
  • 相关文献

参考文献4

二级参考文献40

共引文献60

同被引文献42

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部