期刊文献+

基于BP神经网络的煤矿透水水源判别方法 被引量:1

Identification Method of Coal Mine water-bursting Source Based on BPNeural Network
下载PDF
导出
摘要 为了快速准确判别透水水源,为煤矿水害防治提供依据,系统分析了福建省龙永煤田透水水源35个标准水样的水化学特征,确定Ca2+、HCO3^-和SO4^2-为特征离子,建立BP神经网络判别模型,随机选取不同水源类型的9个水样作为检验样本,预判正确率88.89%,采集3个未知样本,验证其预判准确率为100%。 In order to distinguish the water-bursting sources quickly and accurately and to provide a basis for the prevention and control of coal mine water disaster,this paper systematically analyzes the hydrochemical characteristics of 35 standard water samples of the water-bursting sources in Longyong coal field in Fujian.Ca2+、HCO3^-and SO4^2 are selected as the characteristic ions for establishing discriminant model based on BP neural network.Nine water samples of different types of water sources are randomly selected as the test samples,the correct rate of predicted discrimination is 88.89%,and it’s 100%when selecting 3 unknown water samples.
作者 徐秀华 XU Xiuhua(Fujian Chuanzheng Communications College,Fuzhou,350007,China)
出处 《华北科技学院学报》 2019年第4期57-64,共8页 Journal of North China Institute of Science and Technology
关键词 透水水源 水化学特征 BP神经网络 判别模型 water bursting source hydrochemical characteristics BP neural network discriminant model
  • 相关文献

参考文献8

二级参考文献42

共引文献67

同被引文献11

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部