期刊文献+

Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice 被引量:7

Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice
下载PDF
导出
摘要 The oral microbiota is associated with oral diseases and digestive systemic diseases.Nevertheless,the causal relationship between them has not been completely elucidated,and colonisation of the gut by oral bacteria is not clear due to the limitations of existing research models.The aim of this study was to develop a human oral microbiota-associated (HOMA) mouse model and to investigate the ecological invasion into the gut.By transplanting human saliva into germ-free (GF) mice,a HOMA mouse model was first constructed.16S rRNA gene sequencing was used to reveal the biogeography of oral bacteria along the cephalocaudal axis of the digestive tract.In the HOMA mice,84.78% of the detected genus-level taxa were specific to the donor.Principal component analysis (PCA) revealed that the donor oral microbiota clustered with those of the HOMA mice and were distinct from those of specific pathogen-free (SPF) mice.In HOMA mice,OTU counts decreased from the stomach and small intestine to the distal gut.The distal gut was dominated by Streptococcus,Veillonella,Haemophilus,Fusobacterium,Trichococcus and Actinomyces.HOMA mice and human microbiota-associated (HMA) mice along with the GF mice were then cohoused.Microbial communities of cohoused mice clustered together and were significantly separated from those of HOMA mice and HMA mice.The Source Tracker analysis and network analysis revealed more significant ecological invasion from oral bacteria in the small intestines,compared to the distal gut,of cohoused mice.In conclusion,a HOMA mouse model was successfully established.By overcoming the physical and microbial barrier,oral bacteria colonised the gut and profiled the gut microbiota,especially in the small intestine. The oral microbiota is associated with oral diseases and digestive systemic diseases. Nevertheless, the causal relationship between them has not been completely elucidated, and colonisation of the gut by oral bacteria is not clear due to the limitations of existing research models. The aim of this study was to develop a human oral microbiota-associated(HOMA) mouse model and to investigate the ecological invasion into the gut. By transplanting human saliva into germ-free(GF) mice, a HOMA mouse model was first constructed. 16 S r RNA gene sequencing was used to reveal the biogeography of oral bacteria along the cephalocaudal axis of the digestive tract. In the HOMA mice, 84.78% of the detected genus-level taxa were specific to the donor. Principal component analysis(PCA) revealed that the donor oral microbiota clustered with those of the HOMA mice and were distinct from those of specific pathogen-free(SPF) mice. In HOMA mice, OTU counts decreased from the stomach and small intestine to the distal gut. The distal gut was dominated by Streptococcus, Veillonella, Haemophilus, Fusobacterium, Trichococcus and Actinomyces. HOMA mice and human microbiota-associated(HMA) mice along with the GF mice were then cohoused. Microbial communities of cohoused mice clustered together and were significantly separated from those of HOMA mice and HMA mice. The Source Tracker analysis and network analysis revealed more significant ecological invasion from oral bacteria in the small intestines, compared to the distal gut,of cohoused mice. In conclusion, a HOMA mouse model was successfully established. By overcoming the physical and microbial barrier, oral bacteria colonised the gut and profiled the gut microbiota, especially in the small intestine.
出处 《International Journal of Oral Science》 SCIE CAS CSCD 2019年第3期192-200,共9页 国际口腔科学杂志(英文版)
基金 supported by the National Key Research and Development Program of China 2016YFC1102700 (X.Z.) National Natural Science Foundation of China grant 81372889 (L.C.), 81370906 (W.H.), 81600858 (B.R.) and 81430011 (X.Z.) Youth Grant of the Science and Technology Department of Sichuan Province, China 2017JQ0028 (L. C.) National Basic Research Program of China 973 Program 2013CB532406 (W.H)
  • 相关文献

同被引文献24

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部