期刊文献+

基于多约束图分割机制的科学工作流调度 被引量:1

SCIENTIFIC WORKFLOW SCHEDULING ALGORITHM BASED ON MULTIPLE CONSTRAINTS GRAPH DIVISION MECHANISM
下载PDF
导出
摘要 为了解决数据密集型环境下的科学工作流应用调度问题,提出一种基于多约束图分割的工作流调度算法。解决标准图分割方法中顶点维度单一而无法反映任务并行性的问题;设计多维度的顶点权重矢量机制,通过有向边的修剪,在所有维度上实现权重和的均衡;得到最小化的任务间数据传输量,降低通信代价。以Montage工作流结构为例进行仿真实验,结果表明,该算法仅以较小的图分割时间代价使得工作流调度过程中的访问量降低了14%,调度时间降低了31%。 To solve the scientific workflow application scheduling problem in data-intensive environment,this paper proposed a workflow scheduling algorithm based on multiple constraints graph divison.Our algorithm solved the problem that the standard graph partitioning only had a single vertex dimension and could not response tasks parallelism.We designed a vertex weight vector mechanism with multi-dimension to achieve the balance of the weight sum in all dimensions.The we got the minimum amount of data transmission between tasks to reduce the communication costs.Taking Montage workflow structure as an example,we carried out simulation experiments.The results show that our algorithm can reduce the data access about 14% with the cost of the small graph partitioning time in the workflow scheduling and reduce about 31% of the scheduling time.
作者 王柳婧 蒋一翔 徐元根 Wang Liujing;Jiang Yixiang;Xu Yuangen(Ningbo Cigarette Factory,Zhejiang Zhongyan Industrial Co.,Ltd.,Ningbo 315504,Zhejiang,China)
出处 《计算机应用与软件》 北大核心 2019年第10期299-304,共6页 Computer Applications and Software
基金 浙江省自然科学基金项目(2016ZND0034) 浙江省云平台示范基地建设项目(2016001029)
关键词 云计算 科学工作流 协同进化 遗传算法 Cloud computing Scientific workflow Coevolutionary Genetic algorithm
  • 相关文献

参考文献1

二级参考文献13

  • 1LinC, Lu S Y, Fei X B, Chebotko A, Pai D, Lai Z Q, Fotouhi F, Hua J. A reference architecture for scientific workflow management systems and the view soa solution. IEEE Transactions on Service Computing, 2009, 2(1): 79-92.
  • 2Ren K J, Chen J J, Xiao N, Song J Q. Building quick service query list (QSQL) to support automated service discovery for scientific workflow. Concurrency and Computation: Practiee Experience, 2009, 21(16): 2099-2117.
  • 3Weiss A. Computing in the cloud. ACM Networker, 2007, 11:18-25.
  • 4Chervenak A, Deelman E, Livny M, Su M H, Schuler R, Bharathi S, Mehta G, Vahi K. Data placement for scientific applications in distributed environments//Proceedings of the8th IEEE/ACM International Conference on Grid Compu- ting. Washington, USA, 2007:267-274.
  • 5Singh G, Vahi K, Ramakrishnan A, Mehta G, Deelman E, Zhao H N, Sakellariou R, Blackburn K, Brown D, Fairhurst S, Meyers D, 13erriman G. 13, Good J, Katz D S. Optimizing workflow data footprint. Scientific Programming, 2007, 15(7) : 249-268.
  • 6DuZH, HuJK, ChenYN, ChengZL, WangXY. Opti- mized QoS-aware replica placement heuristics and applica- tions in astronomy data grid. The Journal of Systems and Software, 2011, 84(7): 1224-1232.
  • 7Fedak G, He H, Cappello F. BitDew.- A programmable environment for large-scale data management and distribu- tion//Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. Austin, USA, 2008:1-12.
  • 8Gu Y, Grossman R. Toward efficient and simplified distribu- ted data intensive computing. IEEE Transactions on Parallel And Distributed Systems, 2011, 22(6): 974-984.
  • 9Gu Y, Grossman R. UDT: UDP-based data transfer for high-speed wide area networks. Computer Networks, 2007, 51(7) : 1777-1799.
  • 10Warneke D, Kao O. Exploiting dynamic resource allocation for efficient parallel data processing in the Cloud. IEEE Transactions on Parallel and Distributed Systems, 2011,22(6): 985-997.

共引文献64

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部