期刊文献+

五次长短波共振方程初值问题解的存在性

Existence of Solutions for the Initial Value Problems of a Five-Time Long-Short Wave Resonance Equation
下载PDF
导出
摘要 研究了五次长短波共振方程初值问题解的存在性。首先利用压缩映射原理证明了局部解的存在性,然后通过建立局部解具能量守恒性质,并利用先验估计方法,证明了具有高次非线性项的长短波共振方程的局部解可以延拓到整个定义域,最终证明了全局解的存在性。 The existence of the solutions to the initial value problem of a five-time long-short wave resonance equation was focused.First,the existence of the local solution was proved by using the compression mapping theorem.Then,the local solution with energy conservation properties was established and the prior estimation method was used to,It was also proved that the local solution of high-order nonlinear terms in the five-time long-short wave resonance equation can be extended to the whole domain.Finally,the existence of the global solution was testified.
作者 王贝贝 张卫国 WANG Beibei;ZHANG Weiguo(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《上海理工大学学报》 CAS CSCD 北大核心 2019年第4期313-320,共8页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11471215)
关键词 压缩映射原理 先验估计 能量守恒 compression mapping theorem a prior estimate energy conservation
  • 相关文献

参考文献4

二级参考文献11

  • 1Oikawa M,Okamura M,Funakoshi M.Two-dimensional resonant interaction between long and short waves[J].J Phys Soc Jpn,1989,58(12):4416-4430.
  • 2Lai D W C,Chow K W."Positon" and "dromion" solutions of the (2+1) dimensional long wave-short wave resonance interaction equations[J].J Phys Soc Jpn,1999,68(6):1847-1853.
  • 3Radha R,Kumar C S,Lakshmanan M,et al.Periodic and localized solutions of the long wave-short wave resonance interaction equation[J].Journal of Physics A:Mathematical and General,2005,38(44):9649-9663.
  • 4Yurova M.Application of dressing method for long wave-short wave resonance interaction equation[J].Journal of Mathematical Physics,2007,48(5):2101-2107.
  • 5Xin jie,Guo Boling,Han Yongqian,et al.The global solution of the (2+1)-dimensional long waves-short waves resonance interaction equation[J].Journal of Mathematical Physics,2008,49(7):3504.
  • 6Brezis H,Gallouet T.Nonlinear Schrdinger evolution equations[J].Nonlinear Analysis:TMA,1980,4(4):677-681.
  • 7周毓麟 郭柏灵.高阶广义Korteweg-de Vries型方程组的周期边界问题与初值问题.数学学报,1984,27(2):154-176.
  • 8周毓麟,郭柏灵.高阶广义 Korteweg-de Vries 型方程组的周期边界问题与初值问题[J]数学学报,1984(02).
  • 9郭柏灵,沈隆钧.Захаров方程周期初值问题整体古典解的存在性唯一性[J]应用数学学报,1982(03).
  • 10卢红,辛杰.(2+1)维广义耗散长短波方程的整体解[J].鲁东大学学报(自然科学版),2010,26(4):297-300. 被引量:4

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部