期刊文献+

基于K均值聚类与局部离群因子算法的故障检测研究 被引量:8

Fault Detection Based on K-means Clustering and Local Outlier Factor Algorithm
下载PDF
导出
摘要 针对化工生产过程的多工况、数据多模态问题,提出一种基于K均值聚类的局部离群因子故障检测方法。首先利用K均值聚类算法对多模态工业数据进行聚类,将各个模态的数据分离出来,然后运用局部离群因子算法在各个模态下单独建立模型,并且确定各个模态下的局部离群因子控制限。检测时首先判断样本属于哪一类,然后在相应类别下求取局部离群因子值并与此类别下的控制限进行比较,确定是否为故障数据。将此方法运用到TE过程的多模态数据中,并且将此方法与单独应用局部离群因子算法做故障检测对比,结果表明:所提算法可以大幅提高故障的检测率。 Considering the multi-condition and the data’s multi-model of chemical production process, a K-means clustering-based local outlier factor(LOF) fault detection method was proposed. Firstly, having the K-means clustering algorithm adopted to cluster multimodal industrial data and to isolate each modal data, then having LOF algorithm employed to establish the model under different modal model separately and to determine each modal’s LOF control limit. In the detection, having the sample judged to determine its kind and then to obtain its local outlier factor value under the corresponding categories and to compare it with the control limit under this category so as to make sure whether it is a fault data. In this paper, applying this method to the TE process of multimodal data and comparing its result with that of the fault detection through using local outlier factor alone show that, the K-means clustering algorithm can greatly improve the fault detection rate.
作者 李元 耿泽伟 LI Yuan;GENG Ze-wei(College of Information Engineering,Shenyang University of Chemical Technology)
出处 《化工自动化及仪表》 CAS 2019年第10期816-821,共6页 Control and Instruments in Chemical Industry
基金 国家自然科学基金重大项目(61490701) 国家自然科学基金项目(61673279)
关键词 多模态 K均值聚类 局部离群因子算法 TE过程 故障检测 multimodal K-means clustering local outlier factor algorithm TE process fault detection
  • 相关文献

参考文献8

二级参考文献134

  • 1FengDING TongwenCHEN.Modeling and Identification of Multirate Systems[J].自动化学报,2005,31(1):105-122. 被引量:35
  • 2刘世成,王海清,李平.青霉素生产过程的在线统计监测与产品质量控制[J].计算机与应用化学,2006,23(3):227-232. 被引量:9
  • 3Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry[J]. Computers & Chemical Engineering, 2008, 32(1/2): 12- 24.
  • 4Kano M, Nagao K, Hasebe S, et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J]. Computers & Chemical Engineering, 2002, 26(2): 161- 174.
  • 5Qin S J, Valle S, Piovoso M J. On unifying multiblock analysis with application to decentralized process monitoring[J]. J of Chemometrics, 2001, 15(9): 715-742.
  • 6Qin S J, Cherry G, Good R, et al. Semiconductor manufacturing process control and monitoring: A fab-wide framework[J]. J of Process Control, 2006, 16(3): 179-191.
  • 7Zhang Y, Dudzic M S. Online monitoring of steel casting processes using multivariate statistical technologies: From continuous to transitional operations[J]. J of Process Control, 2006, 16(8): 819-829.
  • 8Undey C, Tatara E, Cinar A. Real-time batch process supervision by integrated knowledge-based systems and multivariate statistical methods[J]. Engineering Applications of Artificial Intelligence, 2003, 16(5/6): 555- 566.
  • 9Desborough L, Harris T. Performance assessment measures for univariate feedback control[J]. J of Chemical Engineering, 1992, 70(6): 262-268.
  • 10Kesavan P, Lee J H. Diagnostic tools for multivariable model-based control systems[J]. Industial Engineering Chemistry Research, 1993, 36(7): 2725-2738.

共引文献441

同被引文献87

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部