期刊文献+

Crystalline InGaZnO quaternary nanowires with superlattice structure for high-performance thin-film transistors 被引量:2

原文传递
导出
摘要 Amorphous indium-gallium-zinc oxide (a-IGZO) materials have been widely explored for various thin-film transistor (TFT) applications;however, their device performance is still restricted by the intrinsic material issues especially due to their non-crystalline nature. In this study, highly crystalline superlattice-structured IGZO nanowires (NWs) with different Ga concentration are successfully fabricated by enhanced ambient-pressure chemical vapor deposition (CVD). The unique superlattice structure together with the optimal Ga concentration (i.e., 31 at.%) are found to effectively modulate the carrier concentration as well as efficiently suppress the oxygen vacancy formation for the superior NW device performance. In specific, the In1.8Ga1.8Zn2.4O7 NW field-effect transistor exhibit impressive device characteristics with the average electron mobility of ~ 110 cm^2-V^-1·s^-1 and on/off current ratio of ~ 10^6. Importantly, these NWs can also be integrated into NW parallel arrays for the construction of high-performance TFT devices, in which their performance is comparable to many state-of-the-art IGZO TFTs. All these results can evidently indicate the promising potential of these crystalline superlattice-structured IGZO NWs for the practical utilization in next-generation metal-oxide TFT device technologies.
出处 《Nano Research》 SCIE EI CAS CSCD 2019年第8期1796-1803,共8页 纳米研究(英文版)
基金 supported by the National Natural Science Foundation of China (No.51672229) the General Research Fund (CityU 11211317) the Theme-based Research (T42-103/16-N) of the Research Grants Council of Hong Kong SAR, China, and the Science Technology and Innovation Committee of Shenzhen Municipality (NO.JCYJ20170818095520778) a grant from the Shenzhen Research Institute, City University of Hong Kong.
  • 相关文献

参考文献2

二级参考文献31

  • 1Goldberger, J.; Sirbuly, D. J.; Law, M.; Yang, P. D. ZnO nanowirc transistors. J. Phys. Chem. B 2005, 109, 9-14.
  • 2Jiang, C. Y.; Sun, X. W.; Tan, K. W.; Lo, G. Q.; Kyaw, A. K. K.; Kwong, D. L. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Appl. Phys. Lett. 2008, 92, 143101.
  • 3Kuang, Q.; Lao, C. S.; Wang, Z. L.; Xie, Z. X.; Zheng, L. S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070-6071.
  • 4Zhang, D. H.; Liu, Z. Q.; Li, C.; Tang, T.; Liu, X. L., Hart, S.; Lei, B.; Zhou, C. W. Detection of NO2 down to ppb levels using individual and multiple In203 nanowire devices Nano Lett. 2004, 4, 1919-1924.
  • 5Park, C. H.; Lee, G.; Lee, K. H.; Im, S.; Lee, B. H.; Sung, M. M. Enhancing the retention properties of ZnO memory transistor by modifying the channel/ferroelectric polymer interface. AppL Phys. Lett. 2009, 95, 153502.
  • 6Lin, M. C.; Chu, C. J.; Tsai, L. C.; Lin, H. Y.; Wu, C. S.; Wu, Y. P.; Wu, Y. N.; Shieh, D. B.; Su, Y. W.; Chen, C. D. Control and detection of organosilane polarization on nanowire field-effect transistors. Nano Lett. 2007, 7, 3656- 3661.
  • 7Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field- effect transistors. Nature 2006, 441,489-493.
  • 8Ho, J. C.; Yerushalmi, R.; Jacobson, Z. A.; Fan, Z. Y.; Alley, R. L.; Javey, A. Controlled nanoscale doping of semiconductors via molecular monolayers. Nat. Mater. 2007, 7, 62-67.
  • 9Liao, L.; Bai, J. W.; Lin, Y. C.; Qu, Y. Q.; Huang, Y.; Duan, X. F. High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high- dielectric-constant gate dielectrics. Adv. Mater. 2010, 22, 1941-1945.
  • 10Liao, L.; Lin, Y. C.; Bao, M. Q.; Cheng, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. High- speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305-308.

共引文献4

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部