期刊文献+

三端磁隧道结的稳定性分析

Stability analysis in three-terminal magnetic tunnel junction
下载PDF
导出
摘要 在理论上研究了磁隧道结/重金属层组成的三端磁隧道结中磁性状态的稳定性.以包含自旋转移矩和自旋轨道矩的Landau-Lifshitz-Gilbert (LLG)方程为基础,通过对平衡点进行线性稳定性分析,得到了以钉扎层磁化向量方向和自旋轨道矩电流密度为控制参数的相图.相图中包括平面内的进动态和稳定态以及伸出膜面的进动态和稳定态.当钉扎层磁化向量在垂直薄膜平面内旋转时,通过调节钉扎层磁化向量方向,可以实现自由层磁化向量从稳定态到进动态的转化.当钉扎层磁化向量在薄膜平面内旋转时,在钉扎层磁化向量方向与自由层易磁化轴方向平行或者反平行的结构中,失稳电流最小,当钉扎层磁化向量方向逐渐偏离这两个方向时,失稳电流不断增加.调节自旋转移矩电流密度,可以实现磁化翻转,在自旋轨道矩的辅助下,可以减小翻转时间.相图的正确性通过画不同磁性状态磁化向量随时间的演化轨迹得到了验证. Spin-transfer torque-based magnetic random access memory is becoming more and more attractive in industry due to its non-volatility, fast switching speed and infinite endurance. However, it suffers energy and speed bottlenecks, so the magnetic tunnel junction urgently needs a new write scheme. Compared with the spintransfer torque, emerging spin-orbit torque will replace spin-transfer torque as a new write scheme of magnetic storage technology for its faster writing speed and avoiding the barrier breakdown. A three-terminal magnetic tunnel junction consists of magnetic tunnel junction/heavy metal structure offers a promising perspective from a technological point of view in the design of new generation of magnetic random access memory, for it is possible to control the magnetization dynamics through two current densities of spin-transfer torque and the spin-orbit torque. In this paper, the stability of magnetic states in the three-terminal magnetic tunnel junction is studied theoretically. Through linearizing the Landau-Lifshitz-Gilbert equation including the spin-transfer torque and the spin-orbit torque defined in the spherical coordinates, the new equilibrium directions and linear differential equations are obtained. Performing linear stability analysis of the new equilibrium directions, the phase diagrams defined by the direction of pinned-layer magnetization vector and the current density of spin-orbit torque are obtained. Several magnetic states are distinguished in the phase diagram, such as in-plane precessional and stable states, out-of-plane precessional and stable states. When the pinned-layer magnetization vector rotates out of the film plane, through adjusting the direction of pinned-layer magnetization vector, the switching from stable state to precessional one can be realized. Orientating the pinned-layer magnetization vector in the film plane, neither the out-of-plane precession nor stable states emerges for the current density of spin-orbit torque and spin-transfer torque are relatively small. The instability current takes a minimum value with the pinned-layer magnetization vector nearly parallel or antiparallel to the easy axis of free layer and increases with the direction of pinned-layer magnetization vector deviating from these two locations. The magnetization reversal can be realized through adjusting the current density of spin-transfer torque, and the reversal time can decrease greatly under the assisting of spin-orbit torque. By showing the dependence of magnetization vector on the time of different magnetic states, the validity of phase diagram is confirmed. The selecting of the different directions of the pinned-layer magnetization vector provides an alternative way to control the current-driven magnetization dynamics. This will provide useful guide for the application of threeterminal magnetic tunnel junction.
作者 王日兴 李雪 李连 肖运昌 许思维 Wang Ri-Xing;Li Xue;Li Lian;Xiao Yun-Chang;Xu Si-Wei(Normal College, Hunan University of Arts and Science, Changde 415000, China;Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, Hunan University of Arts and Science, Changde 415000, China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2019年第20期252-259,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11704120,11847159) 常德市科技局项目(批准号:2016KZ22,2018J048)资助的课题~~
关键词 磁化翻转 自旋转移矩 自旋轨道矩 稳定性分析 magnetization reversal spin-transfer torque spin-orbit torque stability analysis
  • 相关文献

参考文献5

二级参考文献163

  • 1任敏,张磊,胡九宁,邓宁,陈培毅.基于磁动力学方程的电流感应磁化翻转效应的宏观模型[J].物理学报,2007,56(5):2863-2867. 被引量:4
  • 2Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
  • 3Berger L 1996 Phys. Rev. B 54 9353
  • 4Heide C, Zilberman P E, Elliott R J 2001 Phys. Rev. B 63 064424
  • 5Shpiro A, Levy P M, Zhang S 2003 Phys. Rev. B 67 104430
  • 6Guo J, Jalil M B A 2005 Phys. Rev. B 71 224408
  • 7Barnas J, Felt A, Gmitra M 2005 Phys. Rev. B 72 024426
  • 8Tsoi M, Jansen A G M, Bass J, Chiang W C, Seck M, Tsoi V, Wyder P 1998 Phys. Rev, Lett. 80 4281
  • 9Wegrowe J E, Hoffer X, Guittienne P, Fabian A, Gravier L, Wade T, Ansermet J P 2002 J. Appl. Phys. 91 6806
  • 10Albert F J, Emley N C, Myers E B, Ralph D C, Buhrman R A 2002 Phys. Rev. Lett. 89 226802

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部