期刊文献+

融合图像识别和VFH+的无人艇局部路径规划方法 被引量:7

Local Path Planning Method for Unmanned Surface Vehicle Based on Image Recognition and VFH+
下载PDF
导出
摘要 针对水面无人艇在复杂海况下的局部避障问题,文中引入深度学习方法来处理视觉信息,提出了结合VFH+算法的水面无人艇的局部路径规划方法.首先利用对称的编码器-解码器结构的图像语义分割模型和FasterRCNN网络模型进行水面边界线检测及水面障碍物识别,构建水面无人艇环境模型;然后采用基于VFH+的局部路径规划方法,通过逐步构建主直方图、二元直方图和掩模直方图压缩环境数据,引入合理的代价函数来获取实现水面无人艇的有效避障方向规划.在MODD图像数据集上的仿真实验以及实船避障实验结果表明,该方法能有效地提取水面图像信息,并得到合理的局部路径规划策略,在10kn航速下的避障轨迹平滑,可满足水面无人艇的自主避障需求. Aiming to solve the problem of local obstacle avoidance for unmanned surface vehicle under complex marine conditions,deep learning was introduced to deal with the vision information and completed the local path planning for unmanned surface vehicle combining with VFH+ algorithm.The image semantic segmentation model with symmetrical encoder-decoder structure and faster RCNN model were used to detect water edge and identify obstacles on the surface of the water to build environment model around unmanned surface vehicle.Then local path planning method based on VFH+ was brought to construct the primary histogram,binary histogram and mask histogram to compress the environment data,and a reasonable cost function was introduced to obtain the effective obstacle avoidance direction for unmanned surface water.Results of simulation experiments based on MODD dataset and obstacle avoidance experiments in real ship show that the algorithm can effectively extract the water surface image information and obtain a reasonable local path planning strategy to lead a smooth obstacle avoidance path at 10 kn,which meets the obstacle avoidance requirements of unmanned surface vehicle.
作者 洪晓斌 魏新勇 黄烨笙 刘艳霞 肖国权 HONG Xiaobin;WEI Xinyong;HUANG Yesheng;LIU Yanxia;XIAO Guoquan(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China;School of Software Engineering,South China University of Technology,Guangzhou 510006,Guangdong,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第10期24-33,共10页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省科技计划项目(2018B010109005) 广州市科技计划项目(201802020021,201802020009)~~
关键词 无人艇 图像分割 FasterRCNN模型 VFH+算法 路径规划 unmanned surface vehicle image segmentation faster RCNN model VFH+ algorithm path planning
  • 相关文献

参考文献5

二级参考文献49

共引文献59

同被引文献40

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部