期刊文献+

基于共享k-近邻与共享逆近邻的密度峰聚类 被引量:5

Density Peak Clustering Based on Shared k-Nearest Neighbors and Shared Reverse Nearest Neighbors
下载PDF
导出
摘要 为了更好地解决密度不均衡问题与刻画高维数据相似性度量问题,提出一种基于共享k -近邻与共享逆近邻的密度峰聚类算法。该算法计算两个点的共享k -近邻数与共享逆近邻数,并结合欧氏距离来确定这两个点之间的共享相似度;将样本点与其逆近邻点的共享相似度之和定义为该点的共享密度,再通过共享密度选取聚类中心。通过实验证明,该算法在人工数据集和真实数据集上的聚类结果较其他密度聚类算法更加准确,并且能更好地处理密度不均衡问题,同时也提高了高维数据的聚类精度。 In order to better solve the problem of density imbalance and characterize the similarity measure of highdimensional data, a density peak clustering algorithm based on shared k - nearest neighbors and shared reverse nearest neighbors is proposed. This algorithm first calculates the shared k -nearest neighbor number and the shared reverse nearest neighbor number of two points, and combines them with the Euclidean distance to determine the shared similarity between the two points. In the following it defines shared density of a point by sum of shared similarities between this point and its reverse nearest neighbors, and then selects the cluster center by the shared density. The experimental results show that the clustering results of the algorithm on the artificial dataset and the real dataset are more accurate than other density clustering algorithms. So the algorithm can better deal with the density imbalance problem, and also improves the clustering accuracy of high-dimensional data.
作者 高月 杨小飞 马盈仓 汪义瑞 GAO Yue;YANG Xiaofei;MAYingcang;WANG Yirui(School of Science, Xi’an Polytechnic University, Xi’an 710600, China;School of Mathematics and Statistics, Ankang University, Ankang, Shaanxi 725000, China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第20期43-51,共9页 Computer Engineering and Applications
基金 国家自然科学基金(No.11501435)
关键词 密度峰聚类 共享k -近邻与共享逆近邻 共享相似度 共享密度 density peak clustering shared k -nearest neighbors and shared reverse nearest neighbors shared similarity shared density
  • 相关文献

参考文献4

二级参考文献19

共引文献112

同被引文献49

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部