期刊文献+

基于平面波导的大视场增强现实眼镜显示器 被引量:1

Planar waveguide based augmented reality smart glasses with large field of view
下载PDF
导出
摘要 本文提出了一种用于实现大视场紧凑型的增强现实眼镜显示器的方法。采用平面波导以及嵌入的窄带负滤光膜来完成图像的传导和耦合。整个光学系统结构简单,并且具有体积小、质量轻的优点。在此方法下,通过建立光线在波导中的几何导光模型,分析了图像传导的约束条件,得到了波导结构的设计参数以及其与显示视场角之间的关系。根据计算结果,制作了一个3mm厚的波导耦合器件来进行原理验证。实验结果表明,利用设计的波导元件及搭建的增强现实眼镜显示器的光学系统可以实现虚拟图像的传导以及其与真实环境的融合,测得的显示视场角约为50°。 We present a way to achieve the compact augmented reality (AR) smart glasses with a large field of view (FOV). A planar waveguide and embedded narrow band minus filters are used for image transmission and coupling. The optical system based on the method is simple in structure and has the advantages of small size and lightweight. A geometric model for the propagation of light in the waveguide is constructed. Based on this model, the constraints of the structure and the dependence of designed parameters with viewing angles are analyzed. According to the calculations, a 3 mm thick waveguide is fabricated to investigate the feasibility of the theory. Experimental results demonstrate that the prototype can deliver a projected image and realize the fusion of the virtual image and the real scene as expected, the measured viewing FOV was about 50°.
作者 肖雪 林枭 郝建颖 臧金亮 谭小地 Xiao Xue;Lin Xiao;Hao Jianying;Zang Jinliang;Tan Xiaodi(School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China)
出处 《光电工程》 CAS CSCD 北大核心 2019年第10期17-22,共6页 Opto-Electronic Engineering
关键词 增强现实 眼镜显示器 波导 视场角 augmented reality smart glasses waveguide field of view
  • 相关文献

参考文献4

二级参考文献22

  • 1明德烈,柳健,田金文.仿射变换在增强现实中的应用[J].系统仿真学报,2001,13(S2):286-289. 被引量:8
  • 2[1]Azuma R T. A Survey of Augmented Reality [J]. Presence: Teleperators and Virtual Environments, 1997, 6(4): 355-385.
  • 3[2]Kukulakos K N, Vallino J R. Calibration-Free Augmented Reality [J]. IEEE Trans Visualization and Computer Graphics, 1998, 4(1): 1-20.
  • 4[3]Feiner S, et al. A Touring Machine: Prototyping 3D Mobile Augmented Reality Systems for Exploring the Urban Environment [A], Proc. 1st Int'l Symp. Wearable Computers (ISWC '97) [C]. Los Alamitos, Calif., IEEE CS Press, 1997: 74-81.
  • 5[4]Azuma R, et al, A Motion-Stabilized Outdoor Augmented Reality System [A]. Proc. IEEE Virtual Reality[C]. Los Alamitos, Calif, IEEE CS Press, 1999: 252-259.
  • 6[5]Liu Yue, Wang Yongtian, Hu Xiaoming. Study on Digital Compass with Automatic Calibration Algorithm [A]. Proceedings of International Symposium on Instrumentation Science and Technology (ISIST'2002)[C]. Jinan, 2002.
  • 7[6]You S, Neumann U, Azuma R. Hybrid Inertial and Vision Tracking for Augmented Reality Registration [A]. Proc.IEEE Virtual Reality[C]. Los Alamitos, Calif, IEEE CS Press, 1999: 260-267.
  • 8[7]Andrei State, Hirota Gentaro, Chen David T, et al. Superior Augmented-Reality Registration by Integrating Landmark Tracking and Magnetic Tracking [A]. Proceedings of SIGGRAPH 96 [C]. 1996.
  • 9[8]Julier S, et al. Information Filtering for Mobile Augmented Reality [A]. Proc. Int'l Symp. Augmented Reality 2000 (ISAR 00)[C]. Los Alamitos, Calif., IEEE CS Press, 2000.
  • 10[9]Stricker D, Daehne P, Seibert F, Christou I, Almeida L, Carlucci R, Ioannidis N. Design and development issues for archeoguide: An augmented reality based cultural heritage on-site guide (icav3d'01)[A]. In International Conference on Augmented, Virtual Environments and Three-Dimensional Imaging [C]. Mykonos, Greece, IEEE 2001.

共引文献103

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部