摘要
针对决策属性集合中只存在两个决策集合的情况,为简化决策属性的表达和计算复杂度,提高约简效率,提出一种改进粗糙集决策表的属性约简算法。该算法以条件属性对决策属性的支持度为基础,采用新的约简规则,基于可分辨矩阵的启发式算法,根据属性重要度改进属性约简算法。以高新技术企业智力资本测量指标体系为例,得到了高新技术企业智力资本的最小约简集。结果表明,该约简算法能够得到一个完备的最小约简集,并能显著提高求解约简集的效率。
Aiming at the existence of only two decision sets in the decision attribute set,in order to simplify the expression and computational complexity of decision attributes and improve the efficiency of reduction,an attribute reduction algorithm for improving the rough set decision table is proposed. The algorithm is based on the support of the condition attribute to the decision attribute,adopts the new reduction rule,and the heuristic algorithm based on the discrimination matrix and improves the attribute reduction algorithm according to the attribute importance. Taking the high-tech enterprise intellectual capital measurement index system as an example,the article obtains the minimum reduction set of intellectual capital of high-tech enterprises. The results show that the reduction algorithm can obtain a complete minimum reduction set and can significantly improve the efficiency of solving the reduction set.
作者
商传磊
张悟移
陈俊营
李建国
SHANG Chuan-lei;ZHANG Wu-yi;Chen Jun-ying;LI Jian-guo(School of Management and Economics, Kunming University of Science and Technology, Kunming 650093, China;Pan-Asia Business School, Yunnan Normal University, Kunming 650093, China)
出处
《科技与经济》
2019年第5期52-56,共5页
Science & Technology and Economy
基金
国家自然科学基金项目——“智力资本导向的供应链企业间知识共享机制研究”(项目编号:71562023
项目负责人:张悟移)成果之一
昆明理工大学管理与经济学院硕博生科研项目预研计划项目成果之一
关键词
粗糙集
属性约简
决策表改进
属性重要度
智力资本
rough set
attribute reduction
improved decision table
attribute importance
intellectual capital