期刊文献+

Synthesis and characterization of MoS2/Fe@Fe3O4 nanocomposites exhibiting enhanced microwave absorption performance at normal and oblique incidences 被引量:2

Synthesis and characterization of MoS2/Fe@Fe3O4 nanocomposites exhibiting enhanced microwave absorption performance at normal and oblique incidences
原文传递
导出
摘要 Herein,we attempted to prepare MoS2/Fe@Fe3O4 nanocomposites capable of strongly absorbing broadband incident electromagnetic(EM)radiation and probed the effects of their composition on complex permittivity and permeability at 2-18 GHz.Calculations of normal-incidence reflection losses(RLs)based on EM parameters revealed that the Fe@Fe3O4 to MoS2 mass ratio strongly influenced the absorption peak intensity and bandwidth.Specifically,an RL peak of-31.8 dB@l5.3 GHz and a bandwidth(RL<-lOdB)of4.8 GHz(13.2-18 GHz)were achieved at a thickness of 1.52 mm and a Fe@Fe3O4 to M0S2 mass ratio of 60:40.Further,RL and bandwidth were investigated for oblique incidence,in which case two kinds of EM waves(TE-electric field perpendicular to plane of incidence;TM-electric field in the plane of incidence)were considered.The absorption peaks of TE and TM waves did not exceed-2 0 dB when the incidence angle increased to 3 0,and the bandwidth(R L<-10 dB)reached 4.2 GHz(TE wave)and 4.0 GHz(TM wave)when this angle was further increased to 40.0°and 50.4,respectively.Finally,the mechanism of microwave absorption was discussed in detail. Herein,we attempted to prepare MoS2/Fe@Fe3 O4 nanocomposites capable of strongly absorbing broadband incident electromagnetic(EM)radiation and probed the effects of their composition on complex permittivity and permeability at 2-18 GHz.Calculations of normal-incidence reflection losses(RLs)based on EM parameters revealed that the Fe@Fe304 to MoS2 mass ratio strongly influenced the absorption peak intensity and bandwidth.Specifically,an RL peak of-31.8 dB@15.3 GHz and a bandwidth(RL<-10 dB)of 4.8 GHz(13.2-18 GHz)were achieved at a thickness of 1.52 mm and a Fe@Fe3 O4 to MoS2 mass ratio of60:40.Further,RL and bandwidth were investigated for oblique incidence,in which case two kinds of EM waves(TE-electric field perpendicular to plane of incidence;TM-electric field in the plane of incidence)were considered.The absorption peaks of TE and TM waves did not exceed-20 dB when the incidence angle increased to 30°,and the bandwidth(RL<-10 dB)reached 4.2 GHz(TE wave)and 4.0 GHz(TM wave)when this angle was further increased to 40.0° and 50.4°,respectively.Finally,the mechanism of microwave absorption was discussed in detail.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第9期1931-1939,共9页 材料科学技术(英文版)
基金 financially supported by the National Natural Science Foundations of China (Nos. 11574122 and 51731001) the Fundamental Research Funds for the Central Universities (No. lzujbky-2017-k20)
关键词 PERMITTIVITY PERMEABILITY Microwave absorption Electromagnetic loss Interface CANCELLATION Permittivity Permeability Microwave absorption Electromagnetic loss Interface cancellation
  • 相关文献

同被引文献10

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部