期刊文献+

Systematic Hydrological Evaluation of the Noah-MP Land Surface Model over China 被引量:4

Systematic Hydrological Evaluation of the Noah-MP Land Surface Model over China
下载PDF
导出
摘要 We evaluate water budget components-namely,soil moisture,runoff,evapotranspiration,and terrestrial water storage (TWS)-simulated by the Noah land surface model with multi-parameterization options (Noah-MP) in China,a large geographic domain challenging for hydrological modeling due to poor observational data and a lack of one single parameterization that can fit for complex hydrological processes.By comparing the model simulations with multi-source reference data,we show that Noah-MP can generally reproduce the overall spatiotemporal patterns of runoff and evapotranspiration over six major river basins,with the annual correlation coefficients generally greater than 0.8 and the Nash-Sutcliffe model efficiency coefficient exceeding 0.5.Among the six basins evaluated,the best model performance is seen over the Huaihe River basin.The temporal trend of the modeled TWS anomalies agrees well with GRACE (Gravity Recovery and Climate Experiment) observations,capturing major flood and drought events in different basins.Experiments with 12 selected physical parameterization options show that the runoff parameterization has a stronger impact on the simulated soil moisture-runoff-evapotranspiration relationships than the soil moisture factor for stomatal resistance schemes,a result consistent with previous studies.Overall,Noah-MP driven by GLDAS forcing simulates the hydrological variables well,except for the Songliao basin in northeastern China,likely because this is a transitional region with extensive freeze-thaw activity,while representations of human activities may also help improve the model performance. We evaluate water budget components—namely, soil moisture, runoff, evapotranspiration, and terrestrial water storage (TWS)—simulated by the Noah land surface model with multi-parameterization options (Noah-MP) in China, a large geographic domain challenging for hydrological modeling due to poor observational data and a lack of one single parameterization that can fit for complex hydrological processes. By comparing the model simulations with multi-source reference data, we show that Noah-MP can generally reproduce the overall spatiotemporal patterns of runoff and evapotranspiration over six major river basins, with the annual correlation coefficients generally greater than 0.8 and the Nash–Sutcliffe model efficiency coefficient exceeding 0.5. Among the six basins evaluated, the best model performance is seen over the Huaihe River basin. The temporal trend of the modeled TWS anomalies agrees well with GRACE (Gravity Recovery and Climate Experiment) observations, capturing major flood and drought events in different basins. Experiments with 12 selected physical parameterization options show that the runoff parameterization has a stronger impact on the simulated soil moisture–runoff–evapotranspiration relationships than the soil moisture factor for stomatal resistance schemes, a result consistent with previous studies. Overall, Noah-MP driven by GLDAS forcing simulates the hydrological variables well, except for the Songliao basin in northeastern China, likely because this is a transitional region with extensive freeze–thaw activity, while representations of human activities may also help improve the model performance.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第11期1171-1187,I0001,I0002,I0003,I0004,I0005,共22页 大气科学进展(英文版)
基金 supported by the National Key Research and Development Program of China (Grant No. 2018YFA0606004) the National Natural Science Foundation of China (Grant Nos. 91337217 and 41375088)
关键词 HYDROLOGICAL EVALUATION Noah-MP multi-parameterization China hydrological evaluation Noah-MP multi-parameterization China
  • 相关文献

同被引文献37

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部