期刊文献+

PID电子鼻在车内空气质量评价的应用研究 被引量:1

Application of PID electronic nose system in air quality evaluation in vehicle
下载PDF
导出
摘要 以便携式PID电子鼻系统作为检测手段,对车内气体VOCs质量分数进行客观检测,同时同步进行车内气体主观评价,并对采集到的数据进行分析.筛选VOCs质量分数特征值,分别建立一元线性回归模型及偏最小二乘回归模型,结果表明,一元线性回归模型对车内气味预测效果较好,预测精度在0.3个气味强度等级之间,同时模型本身拟合效果较好.所建的偏最小二乘回归模型显著性检验结果表明,模型不具有显著相关性,因此不再进行气味强度等级的预测分析. The portable PID electronic nose system was used to detect the VOCs content in the vehicle, and the subjective evaluation of the gas in the vehicle was carried out simultaneously, then to analyze the collected data. Firstly, to select the characteristic values of VOCs concentration. Secondly, to establish the linear regression model and partial least square regression model, respectively. The results showed that the linear regression model had a good effect on the odor prediction of the vehicle, and the precision of prediction was between 0.3 odor intensity grades. At the same time, the fitting effect of the model itself was better. The results of significance test of the established partial least squares regression model showed that the model had no significant correlation, it was no longer used to predict the odor intensity grade.
作者 崔晨 刘伟 王雷 CUI Chen;LIU Wei;WANG Lei(China Automotive Technology and Research Center Co.,Ltd,Tianjin 300300,China)
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2019年第5期611-615,共5页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 车内气味 VOCS 电子鼻 一元线性回归模型 偏最小二乘回归模型 vehicle odor VOCs electronic nose linear regression model partial least square regression model
  • 相关文献

参考文献4

二级参考文献44

  • 1周亦斌,王俊.电子鼻在食品感官检测中的应用进展[J].食品与发酵工业,2004,30(2):129-132. 被引量:54
  • 2聂雪梅,刘仲明,张水华,王启军.电子鼻及其在食品领域的应用[J].传感器技术,2004,23(10):1-3. 被引量:38
  • 3张楠,翁江来,马长伟.电子鼻及其在肉品检测中的应用[J].肉类研究,2005,19(8):29-31. 被引量:16
  • 4贾宗艳,任发政,郑丽敏.电子鼻技术及在乳制品中的应用研究进展[J].中国乳品工业,2006,34(4):35-38. 被引量:36
  • 5于慧春,王俊,张红梅,于勇.龙井茶叶品质的电子鼻检测方法[J].农业机械学报,2007,38(7):103-106. 被引量:68
  • 6韦岗 贺前华.神经网络模型学习及应用[M].北京:电子工业出版社,1994.85-98.
  • 7Hara K., Nakayama K., Karaf A.A.M.. A training data selection in on-line training for multilayer neural networks. In: Proceedings of the IEEE World Congress on Computational Intelligence. The 1998IEEE International Joint Conference on Neural Networks Proceedings, 1998, 3: 2247~2252
  • 8Luo D.S., Chen K.. Refine decision boundaries of a statistical ensemble by active learning. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN'03), Portland, 2003, 1523~1528
  • 9Lampinen J., Litkey P., Hakkarainen H.. Selection of training samples for learning with hints. In: Proceedings of the International Joint Conference on Neural Networks, Washington, 1999, 2: 1438~1441
  • 10YANG Z Y, DONG F, SHIMIZU K, et al. Identification of coumarin-enriched Japanese green teas and their particular flavor using electronic nose [ J ]. Journal of Food Engineering, 2009, 92 : 312 - 316.

共引文献40

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部