摘要
讨论了自然数的等差分拆问题,结合自然数存在等差分拆时分拆的项数特点,分别给出了自然数s=pk,p为不小于3的奇数,k≥p+1/2;s=pk,p为不小于4的偶数,k≥p;s=pk,p为不小于2的自然数,k为奇数且k≥2p+1情况下的等差分拆的一般方法及方法数.
In this paper, the problem of equal difference splitting of natural numbers is discussed. Considering the characteristics of the item number of equal difference splitting of natural numbers, the natural numbers s=pk, p is not less than 3 odd numbers, k≥ p+1/2;s=pk , p is not less than 4 even numbers, k≥p;s=pk , p is not less than 2 natural numbers, k is odd numbers and k≥2p+1 . The general method and method number of equal difference splitting in the above case are given.
作者
唐静
赵美利
TANG Jing;ZHAO Mei-li(Chuzhou City Vocational College,Chuzhou,Anhui,239000)
出处
《贵州师范学院学报》
2019年第3期10-12,共3页
Journal of Guizhou Education University
基金
2018年度高等学校省级质量工程(编号2018mooc156)
2017年院级质量工程(项目编号:2017tszy01)
关键词
等差数列
整数分拆
整数分拆数
arithmetic progression
partition of an integer
denumerant