期刊文献+

基于HBase的海量地理空间数据的空间索引模型构建与优化 被引量:3

Construction and Optimization of Spatial Index Model for Massive Geospatial Data Based on HBase
下载PDF
导出
摘要 传统关系型数据库在海量地理空间数据的存储与管理上面临着高并发访问规模限制、数据库扩展能力不足等困难。非关系数据库如HBase等以其强大的扩展能力与计算能力为该问题提供了新的思路与方法。空间索引模型和分布式存储模式设计是影响基于非关系数据库的海量地理空间数据的存储与查询效率的关键因素。对当前主要基于HBase的索引模型和空间数据存储设计进行了研究,设计了基于行政区划编码与矢量要素编码结合的RowKey(行键),使空间数据在HBase存储中得到很好的聚类效果,并针对要素重叠与边界划分等问题提出了一种基于四叉树-R树的改进的空间索引模型。该模型基于四叉树结构将空间数据划分为多个子网格,为每一个子网格构建R树索引,利用Hilbert(希尔伯特)曲线对子网格进行编码,并设计了基于MapReduce的并行化索引构建算法和相应的空间查询算法。经实验测试,该存储设计和空间索引模型具有较好的查询效率。 The traditional relational database is faced with difficulties in the storage and management of massive geospatial data, such as the limitation of high concurrent access scale and the lack of database expansion ability. Non-relational databases such as HBase provides new ideas and methods for this problem. Distributed storage mode and spatial index model are key factors which affect the distributed storage and query efficiency of massive geo-spatial data based on non-relational database. This paper studies the storage mode of HBase and the current spatial index model based on non-relational database, and designs a kind of RowKey based on the combination of administrative division coding and vector element coding which leads to a good clustering effect for the geo-spatial data in HBase storage. The paper improves a spatial index model based on quadtree-R tree through proposing to solve the problems of feature overlap and boundary division. A parallel index construction algorithm based on MapReduce is designed in this paper to further improve efficiency of algorithm. In the model, the index space is divided into multiple subspace based on the quadtree structure, and the subspace is encoded by Hilbert curve. The experiments have verified the model has higher time efficiency and accuracy than the existing models in spatial data storage and query.
作者 朱静 刘振华 乔栋 Zhu Jing;Liu Zhenhua;Qiao Dong(Faculty of Computer,China University of Geosciences(Wuhan), Wuhan 430074, China;Hubei Key Laboratory of Intelligent Geo-Information Processing,China University of Geosciences(Wuhan), Wuhan 430074, China)
出处 《地质科技情报》 CSCD 北大核心 2019年第5期253-260,共8页 Geological Science and Technology Information
基金 智能地学信息处理湖北省重点实验室开放基金项目“基于HBase的空间大数据分布式存储与查询优化”(KLIGIP-2017B11)
关键词 海量地理空间数据 分布式存储 RowKey 四叉树-R树空间索引模型 空间查询 massive geospatial data distributed storage RowKey Quadtree-R tree spatial index model spatial query
  • 相关文献

参考文献7

二级参考文献68

  • 1顾其钧,杨海浪,赵锐,赵宏,何隆华.皮亚诺扫描分形基图像编码与压缩[J].环境遥感,1993,8(4):300-305. 被引量:4
  • 2张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 3卢炎生,向祥兵,潘鹏.CQRtree空间数据库索引结构及实现算法[J].计算机工程与科学,2006,28(6):108-111. 被引量:4
  • 4赵春宇,孟令奎,林志勇.一种面向并行空间数据库的数据划分算法研究[J].武汉大学学报(信息科学版),2006,31(11):962-965. 被引量:26
  • 5Finkel R A,Bentley J L.Quadtrees:A data structure for retrieval on compositive keys[J].Acta Informatic,1974,4(1):1-9.
  • 6Bentley J L.Multidimensional Binary Search Trees used for Associative serching[J].Communications of the ACM,1975,18(9):509-517.
  • 7Bentley J L.Multidimensional Binary Search Trees in Database Applications[J].IEEE Transactions on Software Engineering,1979,5(4):333-340.
  • 8Robinson J T.The K-D-B-tree:a search structure for large multidimensional dynamic indexes[C] //In:Proceedings of the 1981 ACM SIGMOD international conference on Management of data.New York:ACM,1981:10-18.
  • 9Guttman A.R-Trees:A Dynamic Index Structure for Spatial Searching[C] //In:ACM SIGMOD Record.New York:ACM,1984:47-57.
  • 10Matsuvama T,Hao L V,Nagao M.A file organization for geographic information systems based on spatial proximity[J].Int Journal Comp Vision,Graphics,and Image Processing,1984,26(3):303-318.

共引文献120

同被引文献19

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部