期刊文献+

基于改进Faster R-CNN的无人机航拍图像目标检测 被引量:5

Object Detection in UAV Aerial Images Based on Improved Faster R-CNN
下载PDF
导出
摘要 无人机航拍图像中目标检测问题要求检测模型具有旋转不变性。针对这一问题,提出改进的 Faster R-CNN 算法。首先在区域建议网络中采用 K-means 聚类方法生成适应数据集的预设锚点框,其次在 Fast R-CNN网络中引入新的特征提取层,并在模型多任务损失函数中增加旋转约束条件,为后续检测学习旋转不敏感特征。在人工采集的数据集上进行了对比实验,结果表明:在检测速度无明显降低的情况下,改进方法的检测精度提升了1. 6%mAP,算法检测性能较优,更能满足实际应用需求。 To solve the problem of object detection in UAV aerial images,which requires an detector with rotation-invariance,this paper proposes an improved Faster R-CNN algorithm. Firstly,in region proposal network,K-Means clustering is used to generate pre-set anchors that enhance adaptability for different datasets. Then,in Fast R-CNN,it introduces a new feature layer and adds rotation constraints to the model’s multi-task loss function for learning rotation-insensitive feature.Experiments on collected dataset show that the improved method increases the accuracy by 1. 6% mAP without significant decline at speed,which demonstrates the improved method is better and more suitable for application.
作者 陈丁 吉哲 CHEN Ding;JI Zhe(School of Surveying and Mapping,Strategic Support Force Information Engineering University,Zhengzhou 450001,China;61618 Troops,Beijing 100088,China)
出处 《海洋测绘》 CSCD 2019年第5期51-55,共5页 Hydrographic Surveying and Charting
基金 国家自然科学基金(41801319) 国防科技基金(3601023)
关键词 无人机图像 目标检测 FASTER R-CNN 算法 K-MEANS 聚类 旋转不敏感 UAV aerial images object detection Faster R-CNN algorithm K-means cluster rotation-insensitive
  • 相关文献

参考文献3

二级参考文献17

  • 1张永生,王仁礼.遥感动态监测[M].北京:解放军出版社,1998.
  • 2魏瑞轩,李学仁.无人机系统及作战应用[M].北京:国防工业出版社,2009:17-30.
  • 3CANNATA RICHARD W, MUBARAK SHAH, STEVEN G BLASK, et al. Autonomous Video Registration Using Sensor Model Parameter Adjustments[C]//IEEE Proceed- ing 29th Applied Imagery Pattern Recognition Workshop, 2000:215-222.
  • 4WANG C X, ANTHONY STEFANIDIS, ARIE CROITO- RU, et al. Map Registration of Image Sequences Using Lin- ear Features[J]. Photogrammetric Engineering and Remote Sensing, 2008,74(1) :25-38.
  • 5CHARLES R TAYLOR, JOHN T DOLLOFF, MATT BOWER. Automated Video Geo-registration at Real-Time Rate[C/DK]//Proceeding ASPRS Annual Conference: Op- portunities for Emerging Geospatial Technologies, 2010.
  • 6ARIK N1R. Actionable Emergency Mapping[C/DK] ff Pro- ceeding ASPRS Annual Conference: Opportunities for E- merging Geospatial Technologies, 2010.
  • 7GRANT FRALEY, DIETMAR BACKES. Implications of Low-cost Sensor Technologies for UAV Imaging Applica- tions[C/DK]///Proceeding ASPRS Annual Conference : Op- portunities for Emerging Geospatial Technologies, 2010.
  • 8PRATHER LANIER, NATHAN SHORT. Large-baseline Stereo Imaging Utilizing Dynamic Pose Compensation [ C/ DK] // Proceeding ASPRS Annual Conference: Opportuni- ties for Emerging Geospatial Technologies, 2010.
  • 9李德仁,邵振峰.信息化测绘的本质是服务[J].测绘通报,2008(5):1-4. 被引量:124
  • 10张永生.现场直播式地理空间信息服务的构思与体系[J].测绘学报,2011,40(1):1-4. 被引量:18

共引文献102

同被引文献39

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部